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Résumé

Ce document montre comment les principales lois physiques proposées pour l’évolution du paysage peuvent être modélisées par un sys-
tème de trois équations aux dérivées partielles régissant respectivement le ruissellement, l’érosion du sol, et la sédimentation. Plusieurs
expériences numériques sur des modèles altimétriques numériques à haute résolution (MNE) obtenus à partir de paires d’images stéréo
du satellite Pléiades illustrent le potentiel de tels modèles pour simuler la structure fine du réseau hydrologique, et pour comprendre
la morphologie du paysage et ses causes. Ils permettent aussi de simuler les évolutions plausibles du paysage. Les expériences sur
les MNE d’un même site (La Réunion) sont faites à trois résolutions différentes : à la résolution SRTM (90 m), puis à 12 mètres et
4 mètres sur des MNE dérivés de plusieurs paires d’images Pléiades d’un même site. Les expériences montrent que la simulation du
ruissellement de l’eau dépend essentiellement de la résolution du DEM. Cela justifie l’utilisation de DEM à haute résolution comme
ceux qui peuvent maintenant être produits à partir de paires ou triplets Pléiades.

Mots clés : Modèle d’évolution de paysage, équations aux dérivées partielles, réseaux hydrologiques, lois de conservation, loi
d’érosion fluviale, érosion à détachement limité et érosion à transport limité, paires stéréoscopiques Pléiades.

Abstract

This paper illustrates how the main physical laws proposed in landscape evolution (LEMs) can be modeled by a system of three partial
differential equations governing water run-off, stream incision, hill slope evolution and sedimentation. Several numerical experiments
on high resolution digital elevation models (DEMs) obtained from image stereo pairs of the satellite Pléiades illustrate its potential
to simulate the fine structure of the river network, and to understand the landscape morphology and its causes. They also permit to
simulate plausible evolutions. The experiments on DEMs of the same site (La Réunion) are made at three different resolutions : the
SRTM resolution (90 m), and then 12 m and 4 m on DEMs derived from several Pléiades pairs of the same site. The experiments show
that the water run-off simulation critically depends on the DEM resolution. This justifies the use of high resolution DEMs like those
that can now be produced from Pléiades pairs or triplets.

Keywords : Landscape evolution model, partial differential equations, river networks, conservation laws, stream incision law,
detachment-limited and transport-limited erosion, Pléiades stereopairs.

1. Introduction

Among other goals geomorphological research attempts to
model and explain the evolution of landscape morphology un-
der the conjugated effects of erosion, sedimentation, chemical
weathering, creep, tectonic motions, etc. Erosion (runoff) is the
removal of sediment from the land surface by a fluid agent such
as water or air, while sedimentation is the converse process, in
which sediment from the fluid mixture settles onto the land sur-
face. During storm events, rainfall increases the erosion and se-
dimentation activity. By estimating the amount of erosion and
sedimentation, an estimate for the dynamics of the landscape
can be obtained. This effect can be complemented by a terrain
smoothing effect called creep, whose description and causes

are multiple (water splash, chemical and thermal weathering,
gravitational flow of soft soil). All of these effects and others
can be modeled by a landscape evolution model (LEM), sum-
marized in a few partial differential equations. The simulation
of a landscape evolution model requires a thorough knowledge
of the Earth morphology, at the highest possible resolution.
To that effect, increasingly accurate digital elevation models
(DEMs) are indispensable and must cover large pieces of the
landscape, including whole basins, islands or continents. Nu-
merically simulated DEM evolution and its comparison with
the observed landscape morphologies will eventually permit
the estimation of the main model parameters for each land-
scape.

Landscape evolution modeling based on photographs goes
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FIGURE 1 : This simulation, on a 90 meter resolution SRTM model of Piton des Neiges, La Réunion, shows all state variables that are being displayed
in a numerical LEM. Top left : initial DEM. Top middle : river network obtained by the classic method which identifies it with the drainage basin area.
Top right : the steady state value under uniform rain of the water elevation θ(x, y) when water runs on the landscape without any erosion.
Bottom row : evolution for parameters rain r = 10, erosion � = 0.1, creep c = 0.1, after removal by erosion of 5% of the landscape. Bottom left :
final landscape. Bottom middle : last evolution of the landscape (landscape derivative) just before stopping, where black denotes large values and white
small values. Bottom right : map λ(x, y) of the sediment load in water at the beginning of the erosion process. See section 2 for more explanations on
the parameters.

back to Gilbert and Dutton (1877). The observation of real
landscapes and photographs and clever qualitative reasoning
led Gilbert (1909) to establish a mix of quantitative and qua-
litative principles governing all landscapes. The first mathe-
matical explanation of the convexity of hilltops, ascribed to
creep, is attributable to Davis (1892). Ever since the analysis
of Gilbert, landscape evolution models have involved mainly
two competing factors : on the higher slopes, where water cur-
rents are weak and dispersive, soil creep dominates and the
profiles are convex. On lower slopes, water flow concentrates
and profiles become concave leading to the formation of val-
leys. Gilbert proved that creep was dominant over other factors,
such as wind and rain beat.

In this paper we show experiments on high resolution
Pléiades DEMs. We base our numerical experiments on a
recent LEM derived through a simplification of a rich list of
complex numerical LEMs and software proposed in the past
twenty years. The prominent ones are LEGS (Paik, 2012), SI-
GNUM (Refice et al., 2012), SIBERIA, CAESAR (Hancock
et al., 2011), CASCADE (Braun and Sambridge, 1997), DE-
LIM (Howard, 1994), ZSCAPE, LANDSAP (Luo, 2001), GO-
LEM (Tucker and Slingerland, 1994), APERO (Carretier and
Lucazeau, 2005), EROS (Crave and Davy, 2001), and Fasts-
cape (Braun and Willett, 2012). The model which we follow is
introduced in (Chen et al., 2014a) and precised in (Chen et al.,
2014b), where it is demonstrated that most features of previous
numerical LEMs can be summarized in a system of three par-
tial differential equations governing water runoff, erosion and
sedimentation. We shall recall these equations in the next sec-
tion. The objective of a generic LEM models is to identify the
parameters responsible for the morphology of a landscape. The
aforementioned numerical LEMs and software contain dozens
and sometimes hundreds of landscape specific parameters. Yet
an exhaustive numerical exploration cannot identify more than
four or five independent parameters. The LEM which we shall

FIGURE 2 : The simulation of the correct equations with the right
few parameters should maintain a stable morphology (on stable land-
scapes !). The challenge is to identify automatically the parameters for
each (stable) landscape. Here : Madeira, percentage removed : 40%.

use involves only four parameters. The numerical LEM yields
for each initial DEM z(x, y, 0) and each set of parameters an
evolved DEM z(x, y, t) under the conjugate effects of erosion
and sedimentation. It also yields the final maps of the water
height θ(x, y, t) and of the sediment load λ(x, y, t) for each
given steady rain rate r. Figure 1 shows such a simulation on
an SRTM DEM of the central peak of La Réunion, the Piton
des Neiges. It was processed by the test system of three equa-
tions (2.2)-(2.4) described in section 2.

The validity of a such a numerical program is sustainable
if one can show that a landscape evolution model indeed gives
a correct account of landscape evolution on various geological
time ranges. Yet, this would require the observation of DEMs
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on geological time scales incommensurable with human time
scales. Fortunately, we found that a simple (but costly) nume-
rical procedure can deliver a sound estimate of the parameters
of a landscape. The (currently manual) procedure explores po-
tential and reasonable parameter sets, and evolves for each one
the landscape until a fixed percentage of the landscape has been
scraped and transported by the erosion-sedimentation process.
If the landscape morphology is stable and if the right parame-
ters have been found, one can expect that the evolved land-
scape maintains its morphology (same valleys, similar slopes,
etc.). This manual procedure should evolve into a systematic
exploration on a large set of (stable) landscapes. This will re-
quire an adequate criterion to decide if a morphology is stable
under the simulated weathering process. A tentative norm for
such morphology stability measurements could be the Sobolev
semi-norm

�
|∇(z(x, y, t)−z(x, y, 0))|dxdy where z(x, y, t)

is the DEM elevation at time t and t = 0 denotes the observed
DEM.

We already succeeded in some examples to find manually
the right parameter set on the Madeira island, as illustrated in
Figure 2. On a Madeira’s SRTM DEM, we tested our three
equations model with many different four-parameter sets, un-
til we found one for which the landscape morphology was
stable even after 40% of the emerged ground had been eroded
and transported away. A visual exploration shows a completely
stable morphology after this drastic evolution.

Yet our first numerical experiments on Pléiades data turn
out to have been applied on very young unstable volcanic land-
scape, the La Réunion island. For such an instable landscape,
where basins are still in formation, we can nevertheless find
sets of parameters for which the existing basins seem to ex-
tend in a natural way. One can in that way envisage various
evolutions of this landscape after the volcanic activity gets
extinct. Figure 3 displays such plausible evolutions toward a
stable landscape, mainly depending on the creep/rain/erosion
rate balance.

2. The main landscape evolution equations

The numerical LEM used here was introduced in Chen
et al. (2014a) and extended in Chen et al. (2014b). In the for-
thcoming equations, lowercase letters denote functions of the
landscape depending on two geographic coordinates (x, y) and
on time t. The function θ(x, y, t) denotes the water height at
(x, y) and time t, and similarly z(x, y, t) is the bedrock surface
elevation, θ(x, y, t) the water height. For a sake of simplicity,
we shall in general omit the triplet (x, y, t) in the equations.
We denote by z = z + θ the landscape altitude (land surface
elevation plus water), |∇(z+θ)| the landscape slope, λ the se-
diemnt load in water, so that λ

θ
is the sediment density in water.

Finally v is the water velocity. (All of these state variables de-
pend on (x, y, t).) ∇φ denotes the gradient of a scalar variable
φ(x, y), Δφ its Laplacian, and ∇ ·v the divergence of a vector
field v(x, y). There are also landscape specific parameters in
the equations, that for simplicity we assume constant in time
and space on each landscape. These parameters, that can be tu-
ned to find the right set, are c the creep rate, � the erosion rate,

r the rain rate, s the sedimentation rate and m the erosion ex-
ponent. Since m = 1

2
was fixed, the numerical model actually

depends on four parameters.
We picked the simplest possible version for the generali-

zed Gauckler-Manning, Saint-Venant law (Gauckler, 1867) so
that the water velocity is simply the negative of the slope,

v = −∇(z + θ). (2.1)

There is no simpler way to express the common sense obser-
vation that water runs downs the slope. The system used in all
experiments governing the evolution of the landscape eleva-
tion z, the water depth θ and the sediment load λ in water is
composed of three equations :

1. the water conservation and transport law

∂θ

∂t
= ∇ · (θ∇(z + θ)) + r; (2.2)

2. the landscape evolution equation with creep, incision
law, sediment deposition

∂z

∂t
= cΔz − �θm|∇(z + θ)|2m + s

λ

θ
; (2.3)

and the conservation of sediment law,

∂λ

∂t
=∇ · (λ∇(z+θ)) + �θm|∇(z+θ)|2m−s

λ

θ
. (2.4)

Simulating this system still depends on five parameters, the
erosion exponent m, the amount of rain r, the creep rate c, the
sedimentation rate s, and the erosion speed �. A stopping time
must also be specified and we decided to fix it as the percen-
tage of DEM erosion, namely the ratio p of the average eroded
elevation in the DEM to the initial average elevation above its
minimal level. We explored typical values of 5% to 30% that
make the evolution visually conspicuous. Since m = 1

2
the

actual number of parameters remains four.
The first equation (2.2) in this three equation system is

the simplest possible water run-off formulation, which can be
viewed as a minimal version of Saint-Venant shallow water
equations. In words, it simply states that water runs off at each
point (x, y) in the direction opposite to its elevation gradient
∇[z + θ](x, y). The source term r expresses that rain is fal-
ling at constant rate all over the landscape. Of course nothing
prevents using a space or time variable r(x, y, t) if such rain-
fall data rates are available. The second equation (2.3) contains
all of the water-ground interactions. The first one is Gilbert’s
creep evolution

∂z

∂t
= cΔz (2.5)

by which a landscape tends to get smooth and round by a dif-
fusion process. The constant c reflects a diffusion speed de-
pending on soil conditions and on the previously mentioned
various perturbing factors (rain splash, wind, chemical wea-
thering, . . .). Such a creep term is found, among others, in Fer-
nandes and Dietrich (1997), the GOLEM numerical simulation
system (Tucker and Slingerland, 1994) Tucker and Slinger-
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land (1994), Moglen et al. (1998), Simpson and Schlunegger
(2003), Culling (1960), Willgoose et al. (1991).

The second term −�θm|∇(z+θ)|2m in (2.3) expresses the
stream incision law (Niemann et al., 2001), (Dietrich and Per-
ron, 2006). It states that the erosion rate in a channel increases
with the flux of water in the channel and with the local gra-
dient. The preferred exponent in many models is m = 1

2
. The

third term in the second equation (2.3) −sλ
θ

is Exner’s sedi-
mentation law by which the sedimentation rate is proportional
to the density of sediment λ

θ
in water.

To summarize, the second equation expresses that the ele-
vation z(x, y, t) evolves under the conjugate actions of creep,
erosion and sedimentation. The third equation (2.4) simply
expresses the conservation and transport law of the sediment
λ(x, y) carried by the water. The first term is the run off term,
strictly analogous to the one present in (2.2) for water run off,
as sediment is carried by water at the same horizontal velo-
city. The second and third terms are the opposite of the terms
present in (2.3). Indeed, the terrain scraped by erosion be-
comes transported sediment, and can sediment to become ter-
rain again.

The simulations of Figure 3 illustrates the variety of mor-
phologies that can be reached from an initial DEM by varying
the parameters of the two-equation model, namely equations
(2.2-2.3) (in that way, no sedimentation occurs, which makes
sense in the sloppy La Réunion). Some of the evolutions main-
tain a qualitative landscape morphology similar to the original,
while others create new basins and rivers and evolve the DEM
toward a different morphology. For example the second result
and the fourth are obtained by fixing the same erosion percen-
tage, 20%. But the second is still very similar to the original,
showing a slow morphological evolution, while the fourth has
created or expanded basins, as the landscape evolves to a ma-
ture form. In the middle of the last row, the exponent m = 0.6

in the incision law has been changed. from m = 0.5 in the
other experiments. Observe that this modification is enough
to modify valley spacing on the left slope. It seems sound to
deduce from this variety of result that, only with four control
parameters, a large variety of landscapes morphologies can be
modeled by a three-equation model.

3. La Réunion at Pléiades resolution

This section presents two experiments for a comparative
study of numerical LEM simulation on the same landscape, La
Réunion, at three very different resolutions. The results show a
coherence of the aspect of the evolved landscapes at all resolu-
tions. But they also show that the numerical landscape evolu-
tion leads to the emergence of a very fine resolution network.
So the better the initial resolution, the better the prediction.
We have shown the results of LEM simulations on an SRTM
90m La Réunion DEM in Figure 3. Figures 4 and 5 show ana-
logue results at much higher resolutions on DEMs obtained
from Pléiades stereo pairs by applying a stereo reconstruc-
tion algorithm yielding respectively DEMs at 12 meters/pixel
and 3m/pixel using the method sketched in de Franchis et al.
(2014). In Figure 4, we display first one image of a stereo pair

of Piton des Neiges, La Réunion. This image at circa 12 me-
ters/pixel is obtained by numerical zoom out from Pléiades
(CNES 2014, Distribution Astrium Services). With this zoom
out the image stereo pair has become virtually noiseless. Thus
our automatic DEM reconstruction chain S2P de Franchis et al.
(2014) yields a fairly dense reconstruction. Nevertheless, inter-
polation remains necessary to remove holes left by the stereo-
matching in dark regions (not lit directly by the sun) and in
zones with very fine texture, which both correspond to a low
SNR, making block matching fail. The next image shows a
plausible DEM evolution, which is stopped when 10% of the
terrain has been removed by erosion. The parameters in the
equation are rain r = 1, erosion �r = 1, creep c = 16, sedi-
mentation s = 1 ; The images of the last row of the figure show
the water network at the end of the evolution θ(x, y) and the
sediment density contained in water λ(x, y), revealing still bet-
ter the fine structure of the hydrological network, as sediment
has high concentration in the fine network. This experiment
illustrates the sensitivity of numerical landscape evolution to
the initial resolution ; clearly the simulated network tends to
increase the DEM resolution by recreating a fine channel net-
work that was missing in the original DEM. This suggests that
much will be gained by increasing still the resolution, as it is
by now possible with Pléiades Earth stereo imaging. The no-
minal resolution of Pléiades being 0.7m, nothing prevents from
simulating landscape evolution at this resolution. This makes
sense, because water runoff is very shallow except in big ri-
vers, and therefore definitely affected by landscape roughness
at the very scale of Pléiades observation. We shall be conten-
ted here to compare our previous landscape evolution at 12m to
the result of the same LEM applied this time to a circa 4 meter
resolution stereo pair (Figure 5). The second stereo pair of Pi-
ton des Neiges, La Réunion, DEM was obtained by zoom out
from the same original stereo Pléiades pair (CNES 2014, Dis-
tribution Astrium Services). The DEM therefore gets a three
times finer resolution and was again interpolated to remove
the holes where stereo matching failed. Again, a plausible evo-
lution toward a stable landscape is shown, after 10% of the
terrain has been removed by erosion. The parameters in the
equation are rain r = 1, erosion �r = 1, creep c = 32, sedi-
mentation s = 1. We display the landscape evolution results
in the same format as in Figure 4 : water network at the end
of the evolution θ(x, y) ; sediment contained in water λ(x, y),
revealing the still finer structure of the hydrological network.
While both networks look compatible, it is clear that the land-
scape evolution at a finer scale is different. If follows from this
observation, as we already anticipated, that applying LEMs at
50 centimeters scale is probably necessary to obtain a realistic
simulation and get to the critical scales at stake in landscape
evolution. This without any doubt requires a huge but feasible
numerical machinery, and it requires stereo pair at a Pléiades
resolution, or finer.
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FIGURE 4 : From top left to bottom right : Piton des Neiges, La Réunion, image at circa 12 meters/pixel by numerical zoom out, obtained from
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creep c = 16, sedimentation s = 1 ; water network at the end of the evolution θ(x, y) ; sediment contained in water λ(x, y), revealing the fine structure
of the hydrological network.
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FIGURE 5 : From top left to bottom right : Piton des Neiges, La Réunion, DEM at circa 4 meters/pixel obtained from Pléiades (CNES 2014, Distribution
Astrium Services) ; a plausible evolution toward a stable landscape, after 10% of the terrain has been removed by erosion. The parameters in the equation
are rain r = 1, erosion �r = 1, creep c = 32, sedimentation s = 1 ; water network at the end of the evolution θ(x, y) ; sediment contained in water
λ(x, y), revealing the fine structure of the hydrological network.
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FIGURE 3 : This experiment illustrates the variety of morpholo-
gies that can be reached from an initial DEM by varying the para-
meters of a three-equation model. From top to bottom and from left
to right, we have the initial landscape and then the evolved land-
scape for (r, �, c, p) = (5, 1, 10, 20), (1, 1, 2, 20), (1, 1, 0.5, 30)

with m = 0.6. Notice how some of the evolutions maintain a simi-
lar landscape, while others create new basins and rivers and evolve it
toward a different morphology. For example the second result and the
third are obtained with the same final amount of scrapped land, 20%.
But the first is still very similar to the original, showing a slow mor-
phological evolution, while the second has created or expanded basins,
as the landscape evolves to a mature form. In the last experiment, the
exponent m = 0.6 has been changed. In all other experiments it is
m = 0.5. Observe that this modification seems to modify valley spa-
cing on the left slope. Data : SRTM La Réunion, Piton des Neiges. See
section 2 for more detail on the equations and parameters.
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