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Résumé

Nous présentons une nouvelle méthode pour la reconstruction de complexes simpliciaux (ensembles de points, segments
et triangles) à partir de nuages de points 3D obtenus par LiDAR mobile, à balayage plan. Notre méthode utilise la topo-
logie inhérente au capteur LiDAR pour définir une relation spatiale entre les points. Pour cela, nous examinons chaque
connexion possible entre points, pondérée en fonction de sa distance au capteur, et les filtrons en privilégiant les struc-
tures collinéaires, ou perpendiculaires aux impulsions du laser. Ensuite, nous créons et filtrons des triangles pour chaque
triplet de segments connectés entre eux, en fonction de leur coplanarité locale. Nous comparons nos résultats à une
reconstruction non pondérée d’un complexe simplicial.

Mots clés : Complexes simpliciaux, reconstruction 3D, nuages de points, Lidar mobile, topologie capteur

Abstract

We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D
point clouds from plane sweep Mobile Laser Scanning (MLS). Our method uses the inherent topology of the MLS sensor
to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent
points, weighted according to its distance to the sensor, and filter them by searching collinear structures in the scene, or
structures perpendicular to the laser beams. Next, we create and filter triangles for each triplet of self-connected edges and
according to their local planarity. We compare our results to an unweighted simplicial complex reconstruction.

Keywords : Simplicial complexes, 3D reconstruction, point clouds, Mobile Laser Scanning, sensor topology

1. Introduction

LiDAR scanning technologies have become a wides-
pread and direct mean for acquiring a precise sampling
of the geometry of scenes of interest. However, unlike
images, LiDAR point clouds do not have a natural topo-
logy (4- or 8-neighborhoods for images) allowing to re-
cover the continuous nature of the acquired scenes from
the individual samples. This is why a large amount of re-
search work has been dedicated into recovering a conti-
nuous surface from a cloud of point samples, which is
a central problem in geometry processing (Hoppe et al.,
1992; Podolak and Rusinkiewicz, 2005; Hornung and Kob-
belt, 2006). Surface reconstruction generally aims at re-
constructing triangulated surface meshes from point clouds,
as they are the most common numerical representation
for surfaces in 3D, thus well adapted for further proces-
sing. The reconstruction of surface meshes has nume-
rous applications in various domains :

— Visualization : a surface mesh is much more adap-
ted to visualization than a point cloud, as the vi-
sible surface is interpolated between points. This
allows a continuous representation of the real sur-
face, and enables the appraisal of occlusions, thus
to render only the visible parts of the scene (Ari-
kan et al., 2014).

— Estimation of differential quantities such as sur-
face normals and curvatures (Zhang et al., 2015).

— Texturing : a surface mesh can be textured (by
applying images on it) allowing for photo-realistic
rendering. In particular, when multiple images of
the acquired scene exists, texturing allows to fu-
sion and blend them all into a single 3D represen-
tation (Baumberg, 2002; Turner et al., 2015).

— Shape and object detection and reconstruction :
these high level processes benefit from surface
reconstruction since it solves the basic geometric
ambiguity (which points are connected by a real
surface in the real scene ?) (Lai et al., 2012; Yang
et al., 2015).

In practice, existing surface reconstruction algorithms
often consider that their input is a set of (x, y, z) coordi-
nates (Xiong et al., 2014), possibly with normals (Morel
et al., 2018). However, most LiDAR scanning technolo-
gies provide more than that : the sensors have a logic of
acquisition that provides a sensor topology (Xiao et al.,
2013; Vallet et al., 2015). For instance, planar scanners
acquire points along a line that moves forward with the
platform (plane, car, ...) it is mounted on. Thus each point
can naturally be connected to the one before and after it
along the line, and to its equivalent in the previous and
next lines (see Figure 1). Fixed LiDARs scan in spherical
(θ, φ) coordinates which also implies a natural connec-
tion of each point to the previous and next along these
two angles. Some scanner manufacturers exploit this to-
pology. They propose visualization and processing tools
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FIGURE 1: Echo intensity of an MLS displayed in sensor topology : vertical axis is the angle θ, horizontal axis is the line
number, equivalent to time as the scanner acquires a constant number of lines per second. Horizontal resolution depends
on vehicle speed (the left part is constant because the vehicle is stopped).

in 2.5D (depth images in (θ, φ)) rather than 3D. Moreover,
LiDAR scanning can provide a meaningful information
that is the position of the LiDAR sensor for each point,
resulting in a ray along which we are sure that space is
empty. This information can also disambiguate surface
reconstruction as illustrated in Figure 2. This is why we
decided to investigate the use of the sensor topology in-
herent to an MLS, to perform a 3D reconstruction of a
point cloud.

Secondly, the geometry processing community has
mainly focused on reconstruction of rather smooth ob-
jects, possibly with sharp edges. They often assume that
the sampling density is sufficient to consider that the ob-
ject is a 2-manifold, which means that the object is locally
2-dimensional (Caraffa et al., 2016). Thus these methods
do not extend well to real scenes where such a guaran-
tee is hardly possible. In particular, scans including poles,
power lines, wires, ... almost never allow to create tri-
angles on these structures because their widths (a few
mm to a few cm) is much smaller than the scanning re-
solution. Scans of highly detailed structures (such as tree
foliage for instance) even have a 0-dimensional nature :
individual points should not even be connected to any
of their neighbors. Applying the Nyquist-Shannon theo-
rem to the range in sensor space tells us that if the geo-
metric frequency (frequency of the range signal in sen-
sor space) is higher than half the sampling frequency
(frequency of the samples in sensor space), then some
(geometric) signal will be lost. This happens in the cases
stated above for instance. Because of this, we should
aim at reconstructing triangles only when the Shannon
condition is met in the two dimensions, but only edges
when the geometric frequency is too high in 1 dimension
and points when the geometric frequency is too high in
the 2 dimensions. Triangles, edges and points are called
simplices, which are characterized by their dimension d
(0 = vertices, 1 = edges, 2 = triangles). If we add the
constraint that edges can only meet at a vertex and tri-
angles can only meet at an edge or vertex, the resul-
ting mathematical object is called a simplicial complex
as illustrated in Figure 3. The aim of this paper is to pro-

pose a method to reconstruct such simplicial complexes
from a LiDAR scan.

2. State of the art

3D surface mesh reconstruction from point clouds
has been a major issue in geometry processing for the
last decades. 3D reconstruction can be performed from
oriented (Kazhdan and Hoppe, 2013) or unoriented point
sets (Alliez et al., 2007). Data itself can come from va-
rious sources : Terrestrial Laser Scanning (Pu and Vos-
selman, 2009), Aerial Laser Scanning (Dorninger and
Pfeifer, 2008; Morsdorf et al., 2004) or Mobile Laser Scan-
ning. Zhu and Hyyppa (2014) combine airborne and mo-
bile laser scanning for the reconstruction of railway areas.
We refer the reader to Berger et al. (2014) for a gene-
ral review of surface reconstruction methodologies and
focus our state of the art on surface reconstruction from
Mobile Laser Scanning (MLS) and on simplicial complexes
reconstruction, which are the two specificities of our ap-
proach.

MLS have been used for the past years mostly for
the modeling of outdoors environments, usually in urban
scenes (Zhu et al., 2011), but also on railway tracks (Mi-
krut et al., 2016). An automatically-generated grammar
for the reconstruction of buildings has been proposed
by Becker and Haala (2009), whereas Rutzinger et al.
(2011) focus more specifically on tree shapes recons-
truction. MLS has also been useful for specific indoor en-
vironments : Zlot and Bosse (2014) used an MLS in an
underground mine to obtain a 3D model of the tunnels.

The utility of simplicial complexes for the reconstruc-
tion of 3D point clouds has been expressed by Popović
and Hoppe (1997) as a generalization manner to sim-
plify 3D meshes. Simplicial complexes are also used to
simplify defect-laden point sets as a way to be robust
to noise and outliers using optimal transport (De Goes
et al., 2011; Digne et al., 2014) or alpha-shapes (Bernar-
dini and Bajaj, 1997).

A first approach has been presented in Guinard and
Vallet (2018), but suffers from its lack of global know-



FIGURE 2: Left : a 2D point cloud (green) and possible reconstructions (blue). Right : knowing the LiDAR rays allows to
solve the ambiguity.
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FIGURE 3: A simplicial complex consists of simplices of
dimension 0 (points, black), 1 (edges, green) and 2 (tri-
angles, red).

ledge. This method is a point-based simplicial complexes
reconstruction with neighboring simplices homogeniza-
tion but no regularization according to the global struc-
ture of the cloud. Our main goal is to produce a 3D re-
construction of a scene using the sensor topology of an
MLS to build a simplicial complex, which should be inde-
pendent from the sampling. Our goal is to improve this
method so that the reconstruction criteria is adaptive to
the structure of the cloud. The aim of this paper is to
propose a reconstruction method combining the following
advantages :

1. Reconstruction of a simplicial complex instead of
a surface mesh, adapting the local dimension to
that of the local structure.

2. Exploiting the sensor topology in order to solve
ambiguities.

3. Exploiting the global structure of the cloud.

3. Methodology

As explained above, sensor topology yields in gene-
ral a regular mesh structure with a 6-neighborhood that
can be used to perform a surface mesh reconstruction.

This reconstruction is however very poor as all depth dis-
continuities will be meshed : very elongated triangles will
be created between objects and their background. This
section investigates criteria to remove these specific tri-
angles, while possibly keeping some of their edges. As
all input points will be kept, the resulting reconstruction
combines points and edges and triangles based on these
points, which is called a simplicial complex in mathema-
tics.

3.1. Objectives

Our main objective is to determine which adjacent
points (in sensor topology) should be connected to form
edges and triangles. We consider that we may be facing
a discontinuity when the depth difference between two
neighboring echoes is high. This depth difference is com-
puted from a sensor viewpoint, which implies that a large
depth difference may correspond to two cases : either the
echoes fell on two different objects with a notable depth
difference, or they fell on a grazing surface (nearly pa-
rallel to the laser beams direction) as shown in Figure 4.
When two neighboring echoes have a large depth diffe-
rence, there is no way we can guess whether they are
located on two separate objects (Figure 4.1) or a gra-
zing surface (Figure 4.2). The core idea of our filtering is
that the only hint we can rely on to distinguish between
these two cases is that if at least three echoes with a
large depth differences are aligned (Figure 4.3). We are
probably in the grazing surface case rather than on se-
parate objects.

Unlike Guinard and Vallet (2018), whose algorithm
was independent from the sampling, we make the as-
sumption that the distance of some part of the scene to
the laser, and the regularity of the emissions of the la-
ser lead to points being naturally further one of the other
in some areas far from the sensor. The influence of this
phenomenon is especially visible on Figure 5, which re-
presents our reconstructions on such a part of a scene.
The left part is computed without taking the sampling va-
riation into account. We clearly see that the algorithm
misses a large part of the roof which we want to retrieve
thanks to a weighting of edges. Moreover, the reconstruc-
tion on the left is very holed, whereas the one on the right
shows a greater regularity. Thus, the criteria for the filte-
ring of possible connexions in (Guinard and Vallet, 2018)
has to be modified in order to take into account this depth



(1) Separation
case

(2) Ambiguous
case

(3) Non-
separation case

FIGURE 4: Illustration of the two cases of important
depth difference. The arrows represent the laser beams.
Figures 4.1 and 4.2 show the cases where two
neighboring echoes (in red) have a significant depth
difference. They can either fall on two different objects or
on a same object and we have no hint to distinguish
these two cases. Figure 4.3 shows the case where three
or more echoes are approximately aligned, with a
significant depth difference. In this case we want to
reconstruct edges between these echoes because it
may correspond to a grazing surface.

difference varying according to the distance to the laser.
We precise that from (Guinard and Vallet, 2018), only the
so-called C0 regularity is modified. The detail of the algo-
rithm is presented in Section 3.3.

To perform our reconstruction, we consider each echo
as an independent point. First, we define a neighborhood
relationship between echoes in the sensor topology. After
that, we create edges, based on the echoes and weigh-
ted according to their distance to the sensor. Last, we
add triangles based on the edges.

3.2. Neighborhood in sensor topology
The sensors used to capture point clouds often have

an inherent topology. Mobile Laser Scanners sample a
regular grid in (θ, t) where θ is the rotation angle of the
laser beam and t the instant of acquisition. The vehicle
moves at a varying speed (to adapt to the traffic and res-
pect the circulation rules) and may rotate, the sampling
is therefore not uniform in space. In general, the number
Np of pulses for a 2π rotation in θ is not an integer so
a pulse Pi has six neighbors Pi−1, Pi+1, Pi−n, Pi−n−1,
Pi+n, Pi+n+1 where n = bNpc is the integer part of Np

as illustrated on Figure 6.1.
However, this topology refers to emitted pulses, not

recorded echoes. One pulse might have 0 echo (no tar-
get hit) or up to 8 as most modern scanners can record
multiple echoes for one pulse if the laser beam intersec-
ted several targets. This is very frequent in the vegetation
or transparent objects for instance.

3.3. Reconstruction
We improve the reconstruction framework presented

in (Guinard and Vallet, 2018), which was based on the
following principles :

— C0 regularity : we want to prevent forming edges
between echoes when their Euclidean distance is
too high.

— C1 regularity : we want to favor edges when two
collinear edges share an echo.

In order to be independent from the sampling, and
to exploit the hexagonal structure of the sensor topology,
both regularities were expressed in an angular manner
and computed on every direction of the structure inde-
pendently. For the reminder of this article, and because
a single pulse can have multiple echoes, we will express,
for a pulse p, its echoes as Ee

p where e ∈ 1 . . . Np, with
Np the number of echoes of p. We expressed the regula-
rities as follow :

— C0 regularity, for an edge (Ee1
p , Ee2

p+1) between
two echoes of two neighboring pulses :

C0(p, e1, e2) = 1− ~ep(e1, e2) · ~lp ,

where ~ep(e1, e2) =

−−−−−−−→
E

e1
p E

e2
p+1

||
−−−−−−−→
E

e1
p E

e2
p+1||

and ~lp is the direc-

tion of the laser beam of pulse p (cf. Figure 7). C0

is close to 0 for surfaces orthogonal to the LiDAR
ray and close to 1 for grazing surfaces, almost pa-
rallel to the ray.

— C1 regularity, for an edge (Ee1
p , Ee2

p+1) between
two echoes of two neighboring pulses :

C1(p, e1, e2)=min
Np−1

e=1 |1−~ep−1(e, e1)·~ep(e1, e2)|·

min
Np+2

e=1 |1−~ep(e1, e2)·~ep+1(e2, e)|.

where the minima are given a value of 1 if the
pulse is empty. C1 is close to 0 is the edge is ali-
gned with at least one of its neighboring edges,
and close to 1 if it is orthogonal to all neighboring
edges.

From the C0 regularity, we derive the following weigh-
ted Cw

0 regularity :

Cw
0 (p, e1, e2) = C0(p, e1, e2) + κ · lp

lmax
,

where lp is the distance from the sensor to the point, lmax

is the maximum distance between a position of a laser
and one of its recorded echoes and κ is the parameter
conditioning the influence of the weighting term. The Cw

0

is no longer independent from the sampling and varies
between 0 and 1 + κ.

The influence of this parameter can also be impro-
ved by adding a threshold on edge length. This way, we
prevent the apparition of long edges between objects far
away from one another (e.g., with a depth difference of
several meters). We propose this approach because we
find very unlikely the case where an edge of a few me-
ters long will be part of the reality. It would mean that
there is an object in the scene that is big enough to have
a few meters side, and that this object is very close to
be parallel to the laser beam. Intuitively, this description
could correspond to a building. Actually, there are very
few points behind the main facade of a building and they
are too sparse to let the algorithm find a possible shape.

4. Results

We implemented the pipeline presented before, first
without the weighting. Then, we added the weighting for-
mulation. We compared the results of both methods.



(1) Unweighted reconstruction. (2) Weighted reconstruction

FIGURE 5: Utility of the weighted simplicial complex reconstruction in areas far from the laser. Here the scene represents a
facade in the grazing surface case. The triangles are shown in red, the edges in green and the points in black.
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(1) The pulse sensor
topology forms a 6-
neighborhood.

θ

t

ec
ho

es •

•••

•

••

••

•

•

•

••

••

(2) Echo sensor topology :
each echo is connected to
all echoes of the 6 neighbo-
ring pulses.

FIGURE 6: Definition of neighborhood in sensor space.
The point considered is colored in red, and connection is
denoted by a red arrow.

For all the following tests, we used data from the Ste-
reopolis vehicle (Paparoditis et al., 2012). The scenes
have been acquired in an urban environment (Paris, France).
All the simplicial complexes presented in this part will be
represented as follow :

— triangles in red,
— edges that are not part of any triangle in green,
— points that do not belong to any triangle or edge

in black.
Note that following its mathematical definition, the end-
points of an edge of a simplicial complex also belong to
the complex, and similarly for the edges of a triangle, but
we do not display them for clarity.

We first study the influence of κ with and without a
threshold on edge length. Then we compare our method
to the method presented in (Guinard and Vallet, 2018).

4.1. Parametrization of κ

In this section, we investigate the influence of the
weighting parameter κ on the reconstruction. We conduc-
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FIGURE 7: Illustration of the computed regularities C0

and C1. The black dots represent the echoes associated
to the considered pulses. The blue and red ones corres-
pond respectively to the precedent and following adja-
cent echoes. The solid arrows show the adjacent echoes
used for the C0 and C1 computation. The black one cor-
respond to the most orthogonal liaison to the sensor
beams. The blue and red ones are selected because the
angle between these vectors and the black one are the
closest possible to π. The black dashed lines represent
the laser beams.

ted two different sets of experiments : the first one shows
the influence of κ if we do not threshold edge length. The
second one corresponds to the case where we limited
edge maximum length, thus enabling the reconstruction
of much more triangles and edges.

For this set of experiments, the values of αm, λ, ω
and ε where respectively fixed to : 5 · 10−2, 10−3, 10−3

and 5 · 10−3. We expect the Cw
0 regularity to improve the

reconstructions using only the C0 regularity, by allowing
a few edges in the simplicial complex that where discar-
ded otherwise. These edges should also encourage the
creation of triangles on places that contained holes, and
in the farthest places of the scene. The results are shown
on Figure 8. The top left figure is the output produced
using (Guinard and Vallet, 2018). We clearly see that the
weighting of the C0 regularity helps our algorithm retrieve
edges and triangles that were lost before. Low values of



κ fulfill some holes of the road, whereas high values of
κ create edges between objects far away one from ano-
ther. The number of points, edges and triangles for each
simplicial complex is shown in Table 1. There is a signi-
ficant decrease of the number of points and egdes when
κ rises, whereas the number of triangles increases a bit.

Triangles Edges Points
κ = 0 737,596 364,730 12,090
κ = 0.1 744,702 353,968 10,944
κ = 0.2 752,726 333,926 10,331
κ = 0.3 758,714 348,742 9,076

TABLE 1: Number of triangles, edges and points per sim-
plicial complex in Figure 8.

The results of the second set of experiments are pre-
sented on Figure 9. Here we wanted to study the in-
fluence of κwhen we prevent the reconstruction of drawn-
out edges. We fixed a maximum length for all edges to 10
meters. The figure on the left corresponds to a recons-
truction without any weighting. Next, the weighting wi-
thout any thresholding is done for κ = 0.03. Last we show
two examples of thresholding edges longer than 10 me-
ters with a κ of respectively 0.2 and 0.5. Using this thre-
sholding allows to use a higher value of κ, thus creating
a cleaner, less holed reconstruction, especially visible in
Figure 9.3, even if a too high value of κ keeps creating
edges between objects not connected in the scene.

4.2. Comparison of both methods

In this part, we compare our method to the method
presented in (Guinard and Vallet, 2018). For these me-
thods, αm, λ, ω, ε and κ are respectively fixed to 0.05,
10−4, 0.1, 5 · 10−3 and 0.4.

Figure 10 presents a reconstruction in a complex ur-
ban scene with facades, roads, trees . . .. The figure on
the left shows the results of (Guinard and Vallet, 2018)
and the right one ours. There is nearly no difference on
small objects like poles or pedestrians. Moreover, we can
see that our method is able to retrieve more surfaces
in the limits of laser’s scope. This is showned by filled
facades in the top of the image, and also by a cleaner
road, even if the whole reconstruction of the road would
recquire a higher value of κ that would just spoil the re-
maining parts of the reconstruction. A zoom on specific
areas of the scene (windows, fences . . .) is visible on fi-
gure 11. We note that on parts of the cloud were the re-
construction without weighting performed well, the add of
weight does not harm the results. Most differences bet-
ween both reconstructions happen on grazing surfaces,
where our method is more efficient.

The white lines visible in some figures corresponds
to occlusions or limits between sections of one second of
acquisition from the MLS. The number of triangles, edges
and points are provided in Table 2. Again, the number of
points and edges dicreases and the number of triangles

rises a bit. This is mainly due to the fact that by authori-
zing more edges in the first step of the reconstruction, our
method can produce more triangles later, thus dicreasing
the number of remaining edges and points.

Triangles Edges Points
Unweighted 1,143,482 755,582 13,757
Weighted 1,153,932 713,064 11,942

TABLE 2: Number of triangles, edges and points per sim-
plicial complex in Figure 10.

5. Conclusions and perspectives

This article presented a method for the reconstruc-
tion of simplicial complexes of point clouds from MLS,
based on the inherent structure of the MLS. We propose
a filtering of edges possibly linking adjacent echoes by
searching for collinear edges in the cloud, or edges per-
pendicular to the laser beams. We added a weighting pa-
rameter to this formulation in order to produce a simplicial
complex less holed, especially on areas far from the sen-
sor, where points are naturally further one from another.

The main drawback of this method is its propensity to
create very long edges between objects not connected
in real life. Even it is partially corrected by thresholding
edges length, allowing to compute a reconstruction with
higher values of κ it does not fully retrieve edges on ob-
jects far from the sensor.

Further developments may also consider a hole filling
process, to override the absence of a few missing sim-
plexes in a large structure (road, building) as in Chauve
et al. (2010) or Harary et al. (2014). Moreover, setting
up a generalization method, like in Popović and Hoppe
(1997), would be interesting to simplify the resulting sim-
plicial complexes on large and regular structures in order
to reduce the memory weight of the simplicial complexes
while maintaining a high accuracy. Last, our reconstruc-
tion may be useful to help a segmentation algorithm in
order to obtain a semantic segmentation of the scene
(Rusu et al., 2009; Jeong et al., 2018).
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Popović, J., Hoppe, H., 1997. Progressive simplicial complexes.

In : Proceedings of the 24th annual Conference on Computer
Graphics and Interactive Techniques. 3–8 August, Los An-
geles, California, United States of America.

Pu, S., Vosselman, G., 2009. Knowledge based reconstruction
of building models from terrestrial laser scanning data. IS-
PRS Journal of Photogrammetry and Remote Sensing 64 (6),
575–584.

Rusu, R. B., Blodow, N., Marton, Z. C., Beetz, M., 2009. Close-
range scene segmentation and reconstruction of 3D point
cloud maps for mobile manipulation in domestic environ-
ments. In : International Conference on Intelligent Robots
and Systems. 11–15 October, Saint Louis, Missouri, United



States of America.
Rutzinger, M., Pratihast, A. K., Oude Elberink, S. J., Vosselman,

G., 2011. Tree modelling from mobile laser scanning data-
sets. The Photogrammetric Record 26 (135), 361–372.

Turner, E., Cheng, P., Zakhor, A., 2015. Fast, automated, sca-
lable generation of textured 3D models of indoor environ-
ments. IEEE Journal of Selected Topics in Signal Processing
9 (3), 409–421.

Vallet, B., Brédif, M., Serna, A., Marcotegui, B., Paparoditis,
N., 2015. TerraMobilita/iQmulus urban point cloud analysis
benchmark. Computers & Graphics 49, 126–133.

Xiao, W., Vallet, B., Paparoditis, N., 2013. Change detection in
3D point clouds acquired by a mobile mapping system. In : IS-
PRS Annals of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences. 12–13 November, Antalya, Turkey.

Xiong, S., Zhang, J., Zheng, J., Cai, J., Liu, L., 2014. Robust sur-
face reconstruction via dictionary learning. ACM Transactions
on Graphics 33 (6), 201.

Yang, B., Dong, Z., Zhao, G., Dai, W., 2015. Hierarchical extrac-
tion of urban objects from mobile laser scanning data. ISPRS
Journal of Photogrammetry and Remote Sensing 99, 45–57.

Zhang, W., Deng, B., Zhang, J., Bouaziz, S., Liu, L., 2015. Gui-
ded mesh normal filtering. Computer Graphics Forum 34 (7),
23–34.

Zhu, L., Hyyppa, J., 2014. The use of airborne and mobile laser
scanning for modeling railway environments in 3D. Remote
Sensing 6 (4), 3075–3100.

Zhu, L., Hyyppä, J., Kukko, A., Kaartinen, H., Chen, R., 2011.
Photorealistic building reconstruction from mobile laser scan-
ning data. Remote Sensing 3 (7), 1406–1426.

Zlot, R., Bosse, M., 2014. Efficient large-scale 3D mobile map-
ping and surface reconstruction of an underground mine. In :
Conference on Field and Service Robotics. 16–19 July, Sen-
dai, Japan, pp. 479–493.


