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Résumé

Les images hyperspectrales fournissent des détails de la scène observée en exploitant les bandes spectrales continues.
Cependant, le traitement de ces images est long à cause de leurs grandes dimensions. Donc, la sélection des bandes
est une pratique commune qui est adoptée avant qu’un traitement soit fait. Ainsi, dans ce travail une nouvelle approche
non-supervisée pour la sélection des bandes, basée sur le clustering et les réseaux de neurones, est proposée. Une
comparaison avec six autres aproches de sélection de bandes montre la validité de l’algorithme proposé.

Mots clés : Sélection de bandes, Non-supervisé, Clustering.

Abstract

Hyperspectral images provide rich spectral details of the observed scene by exploiting contiguous bands. But, the pro-
cessing of such images becomes heavy, due to the high dimensionality. Thus, band selection is a practice that has been
adopted before any further processing takes place. Therefore, in this paper, a new unsupervised method for band selection
based on clustering and neural network is proposed. A comparison with six other band selection frameworks shows the
strength of the proposed method.

Keywords : Band selection, Unsupervised, Clustering

1. Introduction

Hyperspectral images (HSI) are composed of many
continuous bands of the electromagnetic spectrum (Chang,
2003). Thus, a broad range of this spectrum can be co-
vered, which provides lots of information about the scene
under analysis. Consequently, those images are of great
interest to Remote Sensing and Pattern Recognition, be-
cause they make easier some tasks such as image clas-
sification and target detection.

In a Pattern Recognition System (Duda et al., 2001),
however, a large amount of bands can bring problems
in terms of data storage and transmission. Moreover, the
high dimensionality of HSI can cause the curse of dimen-
sionality for the classifiers (Hughes, 1968). Thus, in order
to solve those problems, dimensionality reduction is nor-
mally adopted.

To reduce the dataset dimensionality, feature extrac-
tion (FE) is a commonly used method (Silva et al., 2013).
In sum, FE makes new features by combining the ori-
ginal ones. The resulting features belong to a feature
space with lower dimension, keeping much of the original
data variance. One largely used FE technique is Princi-
pal Components Analysis (PCA) (Sharma, 1996). PCA,
as well as other FE techniques, changes the original da-
taset information, therefore it should not be used when

the physical meaning of individual bands is to be kept
(Khalid et al., 2014).

Like FE methods, band selection (BS) algorithms also
decrease the dimension of the feature space, by selec-
ting bands considered to be relevant, under a certain cri-
terion. The positive aspect, in this case, lies in the fact
that the original information is kept (Li and Liu, 2017).

BS algorithms are classified in two categories : su-
pervised and unsupervised. Supervised band selection
approaches normally outperform unsupervised ones (Yang
et al., 2011). However, the former needs labeled training
samples, which are expensive to be collected. Therefore,
unsupervised methods are a wise alternative for band
selection.

Unsupervised BS methods perform their job without
knowing the class information of the data samples, which
means that neither class separability measures nor clas-
sification accuracies can be used to assess the quality of
the selected bands. Instead, the band selection is made
by taking into account the data structure (Chandra and
Sharma, 2015).

As k-Means algorithm is an unsupervised technique
that clusters data samples according to the dataset struc-
ture in the feature space (Theodoridis and Koutroumbas,
2008), it will be used in this paper in the proposed band
selection framework.



Thus, we propose an easily implementable unsuper-
vised band selection framework. It uses two tools : 1)
k-Means clustering —following a bisecting k-Means fa-
shion (Banerjee et al., 2015) ; and 2) single-layer neu-
ral networks (SLNN) (Haykin, 2009). Initially, the whole
data set is clustered by k-Means into two groups. After
that, a SLNN is used to find a hyperplane that separates
those two clusters, and the bands linked to the biggest
and smallest coefficients of the hyperplane equation are
selected. This procedure just described represents one
iteration of the method, and two bands are selected at
each iteration. If more bands are needed, another itera-
tion is done taking as input data either of the clusters just
generated, instead of the whole data set.

The contributions of this paper are the following :
— It is a novel band selection framework based on

bisecting k-Means clustering and single-layer neu-
ral network ; and

— We compare the proposed method with other six
unsupervised band selection algorithms.

This paper is organized as follows : In Section 2, a
literature review is presented. Section 3 describes the
proposed method. In Section 4, one can find the data-
sets, classifiers, the competitors and the results. Finally,
Section 5 provides a conclusion to this paper.

2. Literature Review

In the literature, we find lots of hyperspectral band se-
lection papers following many different perspectives and
methodologies, such as data manifold, data information
analysis, graph theory, evolutionary computation and clus-
tering.

2.1. Data manifold

Due to the high HSI dimensionality, the different classes
present in the image may lie in manifolds embedded in
subspaces of the original feature space. Furthermore, it
is also possible to explore the sparsity of the data set
in order to find a more meaningful data representation.
For example, in (Wang et al., 2016), the authors propose
a new method in which they look for salient bands. The
number σ of selected bands is user-defined. Then, the
band selection algorithm has two steps. Firstly, β bands
are selected by means clone selection algorithm, which
seeks to minimize the Euclidean distance amongst ele-
ments of the same class, whereas maximizing the dis-
tance of elements from different classes. After that, if
β < σ, those β bands already chosen will serve as seeds
to a Manifold Ranking (MR) algorithm. MR sorts the re-
maining bands, and the most dissimilar band is added
to the β group. This step is repeated until β = σ. In
(Wang et al., 2017), the authors propose a BS frame-
work based on sparsity. Initially, the most representa-
tive bands are obtained according to the correlation ma-
trix, whereas the block-diagonal structure is measured
to segment bands into subspaces. Then, a method for

band selection based on trace LASSO and spectral clus-
tering is used. In (Sun et al., 2015), the authors pro-
pose a method that initially represents data instances
as sparse coefficient vectors by solving a L2-norm op-
timization using the least squares regression (LSR) al-
gorithm. Then, a correct segmentation of band vectors
is made using the resulting LSR matrix with sparse and
block-diagonal structure. After that, a similarity matrix is
constructed by angular similarity measurement, and then
the size of the band subset is calculated by the distribu-
tion compactness plot algorithm. In (Gan et al., 2017),
the authors state that all HSI bands can be represented
by a band subset. Thus, they propose a sparse repre-
sentation of bands with row-sparsity constraint. Besides,
a dissimilarity-weighted regularization term is integrated
with the self-representation model, to avoid contiguous
bands. The problem is solved by the alternating direc-
tion method of multipliers, and the representative bands
can be chosen. In (Sun et al., 2017), a fast and robust
self-representation framework to select a band subset
is proposed. It is assumed the separability structure of
the spectral bands, thus the problem may be seen as
non-negative matrix factorization. After that, an optimi-
zing convex problem is addressed and augmented La-
grangian multipliers are used to select the band subset.
In (Zhu et al., 2017), the authors propose a BS frame-
work that can capture the inter-band redundancy through
low-rank modeling. Then, by using an affinity matrix and
concepts of data quality, the most representative bands
are selected. In (Wang et al., 2015), a BS method ba-
sed on column subset selection is proposed. By means
of column subset selection problem, it is possible to se-
lect some bands maximizing the volume of the selected
subset of columns. The high dimensionality decreases
the contrast amongst bands, thus Manhattan distance is
used to get a higher quality in the BS process. In (Cao
et al., 2016), the authors propose a framework that re-
moves low-discriminating bands that normally need to be
discarded manually. Based on the spatial structure of the
data set, it is possible to determine which bands have
low-discriminating power. Then, a new clustering algo-
rithm is proposed in order to define the optimum number
of bands to be selected.

2.2. Data information analysis

Another criterion that can be used in BS strategies is
the HSI data information analysis. For example, in (Sui
et al., 2015), the authors propose a framework that inte-
grates both the overall accuracy and redundancy. Thus,
an optimization problem using adaptive balance parame-
ter is devised to handle the trade-off between the overall
accuracy and redundancy. Furthermore, an unsupervi-
sed overall accuracy prediction method was adopted. In
(Sun et al., 2014), the authors propose a framework that
merges the concept of noiseadjusted principal compo-
nents with maximum determinant of covariance matrix. A
new index to measure the HSI quality is also proposed,
taking into account signal-to-noise ratios (SNR) and cor-
relation of bands. Based on the new index, the authors



devise an unsupervised band selection method, which
considers the quality of the data set as selection crite-
rion. It selects bands with both high SNR and low corre-
lation. In (dos Santos et al., 2015), the authors propose
a BS method based on the dissimilarity amongst neigh-
boring bands. They use an intermediary representation
named spectral rhythm, which can take advantage of a
pixel sampling strategy, what ends up improving its ef-
ficiency without reducing the selected bands quality. In
(Luo et al., 2017), the authors propose a method ba-
sed on information-assisted density peak index. It takes
into account the intraband information entropy into the
local density and intercluster distance to ensure cluster
centers with a high quality. Besides, the channel proxi-
mity and band distance are integrated to control the local
density compactness. The bands with top-ranked scores
may get clear global distinction, good local density and
also high informative quality. In (Chang et al., 2017), the
authors formulate the BS as a channel capacity problem.
After constructing a band channel with the original bands.
Then, some bands are selected by Blahut’s algorithm,
which iteratively finds a feature space that provides the
best channel capacity. Thus, neither band prioritization
nor interband decorrelation are required. Two iterative
methods are devised to find the best band subset, which
avoid an exhaustive search.

2.3. Graph theory

Using graph theory, in (Yuan et al., 2017) the au-
thors propose a multigraph determinantal point process
(MDPP). The aim is to capture the structure amongst
bands and find the optimal band subset. For this, multiple
graphs are designed to capture the intrinsic relationship
amongst bands. Besides, the proposed MDPP is used to
model the multiple dependencies in graphs, providing an
efficient search strategy for the BS process.

2.4. Evolutionary computation

Evolutionary computation with optimization have been
largely used by BS methods. For example, in (Xu et al.,
2017), the authors propose an incorporated rank-based
multiobjective band selection framework, to avoid conflic-
ting objective functions, such as Jeffreys-Matusita (JF)
and Bhattacharyya distances. During the processing, the
spectral bands are transformed into binary vectors, whose
elements are subjected to flipping with a certain probabi-
lity. In (Gong et al., 2016), the authors propose a frame-
work that handles two conflicting objective functions. One
function is designed to represent the information contai-
ned in the selected bands, by means of entropy. The
other function is set as the number of selected bands.
Both objective functions are optimized simultaneously by
a multiobjective evolutionary algorithm. In (Su et al., 2014),
the authors propose a framework for band selection which
employs two objective functions using JF. During the search
process, the spectral bands are treated as firefly variables.
In (Zhang et al., 2017a), a framework for band selection
based on fuzzy clustering and swarm optimization in pro-
posed. The authors devise a modified fuzzy clustering

method for band selection, whose drawbacks are allevia-
ted by swarm optimization. In (Zhang et al., 2017b), the
authors proposed a BS framework based on memetic al-
gorithms (MA). Firstly, MA is used to select a subset of
spectral bands. Also, a objective function is designed to
select bands considering both bands information and re-
dundancy deduction. The authors claim that this method
is not only computationally faster than exhaustive search
approaches, but also has comparable performances.

2.5. Clustering

Finally, clustering techniques can also be used in band
selection methods. For instance, in (Datta et al., 2012)
the authors propose a framework that removes redun-
dancy amongst bands by means of clustering. Then, from
each cluster one representative band is selected. After
that, the bands are ranked according to their classifica-
tion capabilities. In (Yuan et al., 2016), the authors pro-
pose a framework based on dual clustering that takes
into account the contextual information. For this, a novel
descriptor that reveals the image context is devised, in
order to select the representatives of each cluster, taking
into consideration the mutual effects of each cluster.

3. Proposed Framework

3.1. Definitions

Let C(0) be a hyperspectral dataset, whose elements
are vectors xi ∈ Rd×1 that contain spectral signatures,
where d is the number of bands.

Let S be the set that contains the selected bands, and
let G be set with bands highly correlated to the bands in
S. Let A be the set containing the original spectral bands
ak, with k = 1, 2, ..., d. Let γ be the number of bands to
be selected.

Let f : F −→ t be a single-layer neural network,
where t = {0, 1}, and F is the feature space given by
A \ (S ∪ G). The input to f is x and its output is a scalar
given by

t̂ = f(z) =
1

1 + e−z
, (1)

where z = wTx + b, where w and b are, respectively, the
weights and bias of the neural net.

According to Formula 1, t̂ ∈ [0, 1], and we adopt the
following criteria to give it a binary value :

— if z < 0 =⇒ f < 0.5 =⇒ t̂← 0,
— if z ≥ 0 =⇒ f ≥ 0.5 =⇒ t̂← 1.
Thus, the signal of z determines whether an input

vector is to be assigned to class 0 or 1.
The input data is normalized into [0, 1], consequently

the biggest weights wl ∈ w, with l = 1, ..., p, in the hyper-
plane equation

z = x1iw1 + x2iw2 + ...+ xpiwp + b (2)

cause a major impact on the signal of z, and, conse-
quently, the estimate t̂i for xi. In Formula 2, p represents
the cardinality of the feature space F = A \ (S ∪G).



As for the cost-function of f , we adopt the cross-
entropy. The parameters learning is done by means of
stochastic gradient descent and back-propagation algo-
rithm (Theodoridis and Koutroumbas, 2008).

Finally, let C(l)
g be a partition of C(0), where l is the

partition level, and C(l)
1 ∪ C(l)

2 ∪ · · · ∪ C(l)
g = C(0), and

C(l)
p ∩C(l)

q = ∅, ∀p 6= q. Depending on the problem, there
may be several levels, i.e., l = 1, 2, 3, . . . , and for each
level l the number of partitions g is calculated by

g = 2l.

3.2. Description

3.2.1. General view
Our method starts with an empty set, that is, S = ∅,

to which the bands selected from A will be added. Ini-
tially, at the first iteration, C(0) is clustered by k-Means
into two groups, C(1)

1 and C(1)
2 , using Euclidean distance.

After that, a single-layer neural network is used to find
a separating hyperplane between those two partitions.
Then, two bands are selected and removed from the fea-
ture space F. If more bands are needed, this procedure
must be repeated using the just generated clusters.

Since the proposed framework is based on clustering
and single-layer neural network, it will be called CSLN. In
the sequel, deeper details will be given.

3.2.2. Iterations
CSLN is an iterative BS framework. At each iteration,

a two-class classification problem between the clusters
generated by k-Means C(l)

p and C(l)
q is to be solved by

means of the function f . Two bands are selected at each
iteration, thus it is necessary to repeat this process un-
til the number of bands γ is reached. These criteria are
adopted :

— If γ is even, γ/2 iterations are necessary ; or
— If γ is an odd number, we need (γ + 1)/2 itera-

tions. Then, only the first γ selected bands are
selected.

3.2.3. Selection of bands
When the training of the neural network ends, it is

possible to assess the importance of all a ∈ F by analy-
zing w . Every element xl ∈ x is associated to wl—see
Figure 1—, for l = 1, ..., p, thus the magnitude of wl is
a indicator for the band al. In Formula 2, the largest and
the smallest weights are the most important contributors
to the signal of z. Consequently, the bands attached to
those weights are also considered the most important,
thus they are added to the set S. Then, the feature space
F is updated by A \ (S ∪G).

Since the dimensionality of the feature space F changes
after each iteration, the neural network must be trained
from scratch at each iteration, because the sizes of w
and b also change.

FIGURE 1: An example of the single-layer neural network used
in this thesis. This architecture permits that each band xi be
linked to only one weight wi.

3.2.4. Avoiding highly correlated bands
Since the neighboring HSI bands are highly correla-

ted, we devise a method to avoid the selection of highly
correlated bands. For each band ak ∈ F, we make a vec-
tor vk, whose elements are the bands indices in a des-
cending order in relation to the correlation to the band ak.
Thus, vk(1) is the index of the band avk(1), which is the
band with the highest correlation with ak. The correlation
ρ between two spectral bands aα and aβ is calculated by

ρ(aα,aβ) =
cov(aα, aβ)

σaασaβ
,

where cov() is the covariance and σ stands for the standard-
deviation.

We follow this procedure :
— At a given iteration r, a band ak is selected, so

S← ak ;
— G← avk(1) ; and
— After iteration r, F is updated by A \ (S ∪G).
It is worth-noting that only ak ∈ S are the selected

bands. The bands avk(1) ∈ G are discarded.
Algorithm 1 lists the steps adopted by the proposed

CSLN method.

Algorithm 1 Proposed band selection framework

1: Input : C(0), A, γ, S = ∅ and G = ∅
2: for r = 1 : maxIterations do
3: Train a single-layer neural network f to find a

separating hyperplane between C(l)
p and C(l)

q , pre-
viously clustered by k-Means

4: Identify the bands ak ∈ F associated to the lar-
gest and smallest w ∈ w

5: S← ak, and G← avk(1)

6: Update F by A \ (S ∪G)

7: end for
8: Return : S

Figure 2 illustrates the proposed method. Initially, the
whole dataset is clustered into two groups by k-Means.
Then, a separating hyperplane between them is calcula-
ted by means of a single-layer neural network. This pro-



FIGURE 2: A general view of the proposed BS framework. At
each binary clustering, a single-layer neural net f is used to
select the bands.

cess is repeated until the previously determined quantity
of bands is selected.

4. Results

The results of the proposed framework are shown in
this Section. We compare our results with other six band
selection approaches by taking into account the accuracy
of supervised classifiers.

4.1. Datasets and classifiers

In this paper, we use two hyperspectral images 1, which
are

— Indian Pines : It consists of 224 spectral reflec-
tance bands in the 0.4-2.5 µm wavelength range.
There are 16 classes.

— Pavia University : The Pavia University image
has 103 spectral bands, and 9 classes.

For the the Indian Pines dataset, we use Classifica-
tion and Regression Trees (CART) and k-Nearest Neigh-
bors.

For the Pavia University image, we use KNN, CART
and Support Vector Machine (SVM) (Theodoridis and Kou-
troumbas, 2008).

All the classifiers are run in MATLAB. For KNN, we
use the fitcknn command, k = 3 in all experiments, for
a fair comparison. For CART, the command fitctree

is used, and to run SVM for multiple classes, we use
fitcecoc, with polynomial kernel. All the commands
above belong to the Statistics and Machine Learning tool-
box.

The proposed BS method is also implemented in MAT-
LAB. We use the trainSoftmaxLayer, from Neural Net-
work Toolbox, for single-layer neural network, with 2000

training epochs. We emphasize that normally the training

1. http ://www.ehu.eus/ccwintco/index.php
/Hyperspectral_Remote_Sensing_Scenes

phase stopped before the 2000th training epoch, so big-
ger training epochs quantities were not tested. As for the
k-Means algorithm, we use kmeans, from the Statistics
and Machine Learning toolbox.

The classifiers input data are the images with the se-
lected bands. Moreover, the number of bands selected
by our framework are for comparison purposes. Thus, it
does not mean they are the best quantity for any given
task.

For the classification step, each dataset is divided in
two subsets. The first one is used for the classifier trai-
ning, using 70% of the data. The second subset has the
remaining 30%, and is used during the test phase of the
classifier. The results shown in Section 4.4 are calculated
based on this second data subset.

4.2. Competitors

The performance of the proposed CSLN framework is
compared with six other band selection methods.

Four of them are used with the Indian Pines image :
— This method uses both ranking and clustering for

band selection (Datta et al., 2015), and we will
call it CR ;

— This competitor relies on information divergence,
and it will be called ID (Chang and Wang, 2006) ;

— This framework is also clustering-based (Martinez-
Uso et al., 2007), and it will be referred to as
WaLuDi ; and

— This method resorts to band elimination with par-
titioned image correlation (Datta et al., 2014), and
it will be referred to as EM.

For the Pavia University image, there are two compe-
titors :

— It is a framework that handles two conflicting ob-
jective functions. One function is designed to re-
present the information contained in the selected
bands, by means of entropy (Gong et al., 2016).
It will be called MOBS ;

— This framework constructs a band channel with
the original bands. Then, some bands are selec-
ted by means of Blahut’s algorithm, which iterati-
vely finds a feature space that provides the best
channel capacity (Chang et al., 2017). This com-
petitor will be referred to as CC.

As already stated in Section 3.2.1, the proposed BS
algorithm will be called CSLN.

4.3. Selected bands

The bands selected by the CSLN method are shown
in Table 4.3. For the Indian Pines dataset, we have only
the first 18 best-ranked bands of the competitors, conse-
quently, the analyses of results are restricted to this quan-
tity of bands. For the Pavia University image, 21 bands
are selected for the same reason.

The bands in Table 4.3 are displayed according to
the order they were selected. For instance, at the first
iteration, the bands 2 and 42 were selected for the Indian
Pines image.



FIGURE 3: The Indian Pines dataset under the KNN classifica-
tion.

The comparison of results is made taking into ac-
count different quantities γ of selected bands, that is,
γs = s × 3, with s = 1, 2, 3, 4, 5, 6, for Indian Pines. For
example, for γ2 = 6, the first six bands of Table 4.3 are
used. For the Pavia University dataset, s = 1, 2, 3, 4, 5, 6, 7.

Selected bands 2, 42, 6, 39, 22, 58, 25, 62,
for Indian Pines 71, 101, 94, 151, 111, 203,

156, 183, 171, 215.
Selected bands 69, 1, 68, 3, 92, 6, 77,18,

for Pavia University 101, 24, 99, 51, 14, 74, 9,
75, 29, 97, 95, 8, 103.

TABLE 1: The selected bands according to the order of selec-
tion by the proposed method.

4.4. Results comparison
All the classification results shown in this paper are

the mean values over ten runs.
The results for the Indian Pines image are shown in

Table 4.4. Using KNN, the proposed method CSLN has
the best results using 3, 6 and 9 bands. This fact is illus-
trated in Figure 3.

The results achieved by the CART classifier using In-
dian Pines are also shown in Table 4.4. The proposed
method has the best results with 3 and 9 bands. Figure
4 gives a visual idea of the results.

For the Pavia University dataset, the results are given
in Table 4.4. Using the KNN classifier, the CSLN method
achieves the best results using 3, 6, 9, 12 and 15 bands.
This is shown in Figure 5.

For the CART classifier, the proposed method has
the best results with 3, 6, 9 and 12 bands. In Figure 6 it
is possible to have a visual perspective.

With the SVM classifier, our framework has the best
results with 3, 6, 9, 12 and 15 bands, which is shown in
Figure 7.

4.4.1. Visual inspection of the selected bands
The spectral signatures of the different classes give

us an idea of the features—or bands—that provide a good

FIGURE 4: The Indian Pines image classified by CART.

FIGURE 5: The Pavia University dataset classified by KNN.

FIGURE 6: The Pavia University image classified by CART.



KNN results
3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method acc. acc. acc. acc. acc. acc.
CSLN 71.63% 77.45% 80.69% 75.05% 75.88% 77.52%

WaLuDi 65.12% 64.65% 73.19% 78.05% 76.25% 76.50%
CR 69.06% 73.65% 75.07% 76.89% 76.47% 77.32%
EM 64.92% 66.86% 73.54% 74.54% 78.92% 80.50%
ID 63.85% 67.20% 69.90% 70.23% 71.35% 72.23%

CART results
3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method acc. acc. acc. acc. acc. acc.
CSLN 53.51% 64.49% 68.56% 68.36% 69.41% 70.85%

WaLuDi 45.62% 53.71% 65.55% 68.68% 69.68% 70.96%
CR 52.03% 65.66% 66.93% 68.29% 70.46% 72.25%
EM 44.72% 55.72% 66.28% 66.57% 71.33% 73.12%
ID 49.07% 53.16% 58.85% 62.43% 63.37% 67.06%

TABLE 2: Classification results for Indian Pines.

KNN results
3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.
CSLN 86.66% 90.63% 91.32% 92.11% 92.64% 91.83% 91.82%
MOBS 70.30% 77.26% 87.68% 90.19% 91.15% 92.73% 93.21%
CC 85.98% 85.98% 86.32% 87.14% 87.91% 90.37% 91.00%

CART results
3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.
CSLN 72.96% 81.91% 83.00% 84.37% 84.66% 84.54% 84.45%
MOBS 50.28% 60.13% 77.65% 81.64% 85.37% 88.19% 88.07%
CC 72.87% 73.36% 74.17% 75.18% 76.05% 81.92% 83.77%

SVM results
3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.
CSLN 78.81% 87.17% 90.33% 93.03% 94.36% 83.76% 92.58%
MOBS 61.30% 71.50% 85.96% 91.65% 91.50% 98.23% 98.88%
CC 77.99% 79.47% 80.71% 82.33% 83.75% 84.63% 91.49%

TABLE 3: Classification results for Pavia University.



FIGURE 7: The Pavia University dataset under SVM classifica-
tion.

FIGURE 8: Mean spectral signature values of the Indian Pines
image classes. The vertical lines indicate the location of the first
6 bands selected by the proposed CSLN method.

separation amongst classes. The more the signatures
are far from one another, the better it is for the classifier.

Figures 8 and 9 show the mean spectral signatures of
the classes present in Indian Pines and Pavia University
datasets, respectively. In order to avoid excessive visual
information, the location of only the first 6 selected bands
is displayed, in vertical lines.

We notice that in both cases the selected bands fall
in regions where the spectral signatures are far from one
another. It denotes that our BS framework proposed in
this chapter is capable of selecting appropriate spectral
bands.

4.4.2. Considerations about the single-layer neural net
choice

As already stated in Section 3.2.3, our rationale for
the band selection is based on Formula 2, which, in turn,
is the separating hyperplane calculated by the single-
layer neural network used in this chapter. If the neural
net does not converge to a good local minimum, or if its
architecture is not appropriate for the problem at hand,
no conclusion based on Formula 2 would be reliable.

FIGURE 9: Mean spectral signature values of the Pavia Univer-
sity image classes. The vertical lines indicate the location of the
first 6 bands selected by the proposed CSLN method.

FIGURE 10: Two Indian Pines dataset clusters. The straight
line is calculated by a single-layer neural network.

According to the framework proposed in this chap-
ter, the binary classification problem addressed by the
single-layer neural network comes from the clustering
performed by the k-Means algorithm. Thus, the two groups
are linearly separable, as shown in Figures 10 and 11,
where the straight lines that separate the two clusters
are calculated using a single-layer neural network. The
dimension of the datasets was reduced by the Principal
Components Analysis, whose the first two principal com-
ponents—PC1 and PC2, respectively—are kept, for a 2D
illustration.

It is worth-noting that the two groups are linearly se-
parable not only in a sparse feature space—Figure 10—,
but also in a more dense situation, such as in Figure 11.
Consequently, it is reasonable to use a single-layer neu-
ral network in such situations.

4.5. Remarks about the results

4.5.1. KNN versus CART
For the Indian Pines image, KNN results are, in ge-

neral, superior than that of CART : 73.26% and 63.13%,
respectively. This may be attributed to the fact that CART



FIGURE 11: Two clusters from the Pavia University image. The
straight line that separates the groups is calculated by a single-
layer neural network.

FIGURE 12: Mean results of the three classifiers used for the
Pavia University image.

splits the feature space into regions that correspond to
the classes. Therefore, if xi is found in a region corres-
ponding to a class α, for example, it will be classified as
α, even if it belongs to class β. Whereas, in this same
situation, KNN would analyze the k nearest neighbors of
xi before assigning it a label. Consequently, KNN outper-
forms CART when the class boundaries are highly non-
linear.

4.5.2. KNN, CART and SVM
Concerning the Pavia University image, the mean re-

sults for the KNN, CART and SVM are, respectively, 88.30%,
78.31% and 85.69%. This shows a slight superiority of
KNN in relation to SVM, what is somehow unexpected
in high dimensional feature spaces, as shown in Figure
12. It is worth mentioning that our objective in this the-
sis is the classification comparison amongst different BS
methods, and not the best attainable classification result.
For this, further studies on the classifiers hyperparame-
ters would be necessary.

4.5.3. Band selection methods
As for the band selection methods, using the Indian

Pines image, the proposed BS framework achieves the
best results in 5 out of 12 experiments, whereas the com-
petitor have 4/12, 2/12, 1/12 and 0/12. For the Pavia Uni-
versity image, our method gets 14/21, and the competi-
tors 7/21 and 0/21. The CSLN framework not only gets
superior results than its competitors, but it is also easily
implementable. Thus, one can conclude that it is a good
method for band selection.

5. Conclusion

The spectral information provided by HSIs allow for
a rich characterization of objects in the scene. Howe-
ver, the large amount of data can also bring problems in
terms of processing and storage. Furthermore, features
spaces with high dimensions can cause the curse of di-
mensionality. Thus, we proposed a band selection me-
thod to decrease the dataset dimensionality.

The proposed unsupervised BS framework is based
on k-Means clustering and single-layer neural network.
It begins by splitting the whole dataset into two clusters.
After that, a single-layer neural network is used to cal-
culate a separating hyperplane between the two groups.
The bands associated to the biggest and smallest hyper-
plane coefficients are selected. After that, one needs to
repeat this procedure using the generated clusters until
the desired number of bands is achieved.

According to the the results, we saw that the propo-
sed CSLN method outperformed its competitors in both
images analyzed.

As for the future works, we will investigate other clus-
tering algorithms and binary classifiers to check their per-
formance in the proposed framework.
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