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Résumé 
 
Nous proposons une méthode pour estimer le volume d’arbres individuels d’une zone dominée par des pins maritimes, à 
partir de données LiDAR aéroporté. Le nuage de point à été segmenté à partir de l’algorithme PTrees. Pour chaque 
arbre segmenté, la hauteur du plus haut point, le volume de l’enveloppe du nuage et de l’enveloppe de la couronne ont 
été utilisés dans des modèles non linéaires pour prédire le volume total d’arbres mesurés sur le terrain. A l’arbre, les 
modèles testés permettent d’estimer le volume avec une erreur quadratique moyenne (RMSE) de l’ordre de 35%. Ce 
niveau d’erreur a plusieurs origines. Tout d’abord les volumes terrain ont été estimés à partir de tarifs de cubage qui 
décrivent un arbre moyen. Ainsi une variabilité autour de cet arbre moyen peut être induite par des variations de fertilité 
ou de sylviculture qui agissent localement sur la croissance des arbres. Le passage à la placette permet de diminuer la 
RMSE d’un facteur 2, autour de 15%. Ce changement d’échelle permet en effet de compenser les erreurs liées à la 
segmentation et qui se traduisent par des fausses détections d’arbres soit omissions qui génèrent des fusions de 
couronnes. Par ailleurs, nos résultats suggèrent que des paramètres de hauts niveaux, tel que la hauteur de la base du 
houppier, ou le volume de la couronne peuvent introduire du bruit dans les modèles. Nous recommandons donc de 
sélectionner les variables LiDAR afin de limiter la propagation d’erreur, tout en ajoutant des variables permettant de 
décrire l’environnement de l’arbre afin de mieux prendre en compte ses conditions de croissance.  
 
Mots-clés : LiDAR, Télémétrie laser aéroportée, segmentation d’arbre, changement d’échelle, allométrie 
 
 
Abstract 
 
We developed an-object based framework to assess individual tree volume from airborne LiDAR data in a pine-
dominated forest. Individual tree crowns were extracted using a point-based segmentation algorithm and total tree 
volume was estimated using height and either tree or crown bounding volume information using nonlinear models. Tree-
level models provided root mean squared errors (RMSE) around 30%. Scaling volume at the plot level allows to reduce 
RMSE by a factor 2, i.e. around 15%. This scale change may benefits from error compensation associated to 
segmentation involving false tree detections or tree omissions leading to crown fusions. Along with height, crown volume 
was found to be a good predictor of tree volume, but suffers from computational issues that may further induce variability 
in the models. Future work should integrate an analysis of tree neighborhood in order to improve tree- models by the use 
of indices reflecting competition and growth conditions. 
 
Keywords: LiDAR, Airborne laser scanning, tree segmentation, scaling, allometry 
 
 

1. Introduction 

Light Detection and Ranging, or LiDAR, is a state of the 
art active remote sensing technology providing detailed 
3D information of the Earth’s surface. Ranging systems 
compute distance measurements based on the time-
lapse between the emission and the reception of a laser 
signal sent toward the ground. The precise positioning 
of ground targets having interacted with the signal is 
computed by integrating sensor position and orientation 
measured by an onboard global positioning system 
(GPS) and an inertial measurement unit (IMU), 
respectively [Baltsavias, 1999].  

Owing to the capacity of laser signals to partially 
penetrate forest canopies, LiDAR has emerged as one 
of the most promising remote sensing technology for 
characterizing and monitoring forest structure and 
function over large areas and for supporting forest 
management, mapping and planning [Wulder et al., 
2012; Næsset et al., 2011; van Aardt et al., 2008]. 
Using high sampling densities (i.e. at least 4 pulses per 
square meter) [Evans et al., 2009], forest trees can 
even be characterized individually, enhancing labour-
intensive field-based inventories [Avery and Burkhart, 
2001] and supplying information needed for forest 
models. Such object-oriented approaches are still under 
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development but operational applications become 
feasible owing to the continuous improvement of both 
LiDAR technologies and processing methods [Leckie et 
al., 2005]. 

Various methods have been developed for extracting 
and characterizing individual tree from LiDAR data. 
Most approaches rely on the analysis of a 2D canopy 
height model (CHM) describing the height structure of 
the outer canopy layer [Bongers, 2001]. These methods 
mostly consist in identifying tree apices, through the 
detection of local maxima (LM), and further constructing 
crown segments using geometrical properties of the 
CHM [Solberg et al.,2006; Popescu et al., 2002].  

However these approaches suffer from some 
limitations. The point to raster transformation causes 
information loss and optimization of LM detection 
remains difficult. To overcome these issues, various 
methods have been proposed. Reitberger et al. (2009) 
combined a CHM watershed segmentation algorithm 
with a point clustering algorithm to refine watershed 
segments and detect dominated trees. Morsdorft at al. 
(2004) used a voxel-based approach with a k-means 
clustering algorithm to retrieve individual trees. But the 
LM detection remained based on a CHM. Wang et al. 
(2008) combined loaded the point cloud into a voxel 
structure and used a hierarchical morphological 
algorithm to generate crown region at different height 
intervals. A merging algorithm was then applied to the 
different layers to reconstruct trees. Methods to directly 
process point clouds have also been proposed. Ferraz 
et al. (2012) introduced a clustering approach based on 
a mean-shift algorithm only requiring a scale parameter, 
which has to be optimized per vegetation layers defined 
independently. Li et al. (2012) developed a distance 
based algorithm to sequentially segment trees, from the 
highest to the smallest. The problem of accurate 
identification of LM was solved by using global maxima 
(GM), defined in each segmentation sequence as the 
highest unclassified point. Vega et al. (2014) introduced 
a hierarchical, multi-scale and multi-criteria algorithm. 
The algorithm is also built on the concept of GM, but all 
the trees are extracted simultaneously. Moreover the 
algorithm tackles the problem of point cloud distortion in 
slope areas by extracting trees using elevation (Z) 
instead of height (H=Z-DTM) as usually done. 

Crown segmentation results can be directly used to 
assess forest parameters such as tree density, tree 
height distribution, and cover rate. In addition, many 
approaches have been proposed to use segmentation 
results to assess higher-level tree parameters such as 
volume or biomass. Methods performed either at plot 
[Popescu et al. 2004; Bortolot and Wynne 2005] or tree 
level [Allouis et al. 2013, Person et al. 2002, Hyyppä et 
al. 2001]. However, most of these methods relied on 
CHM-based segmentation products and relied on height 
information alone [Bortolot and Winne 2005], 
sometimes in combination with crown area [Popescu et 
al. 2004, Person et al. 2002, Hyyppä et al. 2001]. Chen 

et al. (2007) demonstrated that volume under the CHM 
performed better than height and crown area to predict 
stem basal area and volume. Allouis et al. (2013) 
further reported that the crown bounding volume, 
computed from crown height and diameter was a good 
predictor of both wood volume and above ground 
biomass and that using vegetation profile information 
improved the accuracy of biomass predictions.  

Based on the aforementioned work, this paper 
proposes an object-oriented approach to estimate wood 
volume at plot level from individual tree measurements. 
Tree segmentation is conducted using PTrees [Vega et 
al. 2014] and sub-point-clouds associated with each 
tree crown are further analyzed to compute crown 
structural parameters and developed a LiDAR-based, 
tree-level predictive model of wood volume. Model 
accuracy is assessed at both tree and plot levels to 
study how segmentation errors and accuracy of tree 
volume estimations behave when information is 
aggregated at plot level for smaller scale mapping.  

2. Study area and data 

2.1. Study area 

The study area is part of the Landes de Gascogne 
lowland area in South-Western France (44.40 N, 
0.50 W), and spreads over 60 km2 of forests dominated 
by even-aged and monospecific stands of maritime pine 
(Pinus pinaster Aiton).  

2.2. Field data 

A total of 30, 15 m radius plots were surveyed during 
April-June 2011. Within each plot, all trees having a 
circumference at breast height (C, 1.3 m) greater than 
23.5 cm, were mapped using angle and distance 
measurements from the plot centre. For each countable 
tree, species, status (i.e. dominant, co-dominant, 
dominated), and height (H) were collected. Height, 
distance and angle were assessed using a clinometer 
(Haglöf, Sueden). Each plot centre was geolocated with 
a sub-decimeter accuracy using a differential GPS 
(Leica GPS 120, Switzerland) and a total station (Leica 
TS02, Switzerland). 

A total of 709 trees were measured on the field (Table 
1), 94.35% of which were maritime pine (n = 669), 
sometimes mixed with a few pubescent oaks (Quercus 
Pubescens Willd.) (n=40). Total aboveground wood 
volume (TV) was derived from species-specific 
allometric equations based on height (H) and 
circumference at breast height (C) and developed in the 
framework of the EMERGE project (Deleuze et al., 
2013):  

�� = �� ∗ (� ∗ �^2		/(4 ∗ � ∗ (1 − 1.3/�)^2)    (1) 

where SH is a shape factor computed using equation 
(2) :  

�� = � + � ∗ √�/� + � ∗ �/�        (2) 
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where a, b and d are species-specific parameters.  

Along with individual tree volumes, plot volumes (PV) 
were computed by summing the individual volumes of 
all the countable trees of the plot. Field data 
characteristics are summarized Table 1.  

 

Volume (m3) Trees  
(n= 709) 

Plots  
(N=30) 

Minimum  0.02 5.59 
Mean  0.85 20.2 
Max  4.27 44.03 
Standard deviation 0.82 7.81 

Table 1 : Summary of the field measured volume (m3) 
at tree and plot levels. 

2.3. LiDAR data 

LiDAR data were acquired during April 2011 by 
Sintegra (France) using a Riegl LMS-Q560 
fullwaveform system (Riegl, Austria). This small 
footprint fullwaveform airborne system was operated at 
550 m above the ground level using a 29.5° maximum 
scan angle and a 10 kHz pulse frequency of 10 kHz, 
leading to a pulse density of 8 pulses.m-2. A 40 % 
overlap was set between adjacent flight lines to 
increase point density and avoid slivers. At the 
aforementioned flight altitude, the 0.5 mrad beam 
divergence produced a 27.5 cm footprint at the ground 
level.  

3. Methods 

3.1. LiDAR preprocessing 

Waveform processing and ground point classification 
were performed by the data provider. Waveform 
processing was performed using RiAnalyze software 
(Riegl, Austria), and led to an average density of first 
returns of 10 pts.m−2. Ground point classification was 
performed using the TIN-iterative algorithm (Axelsson, 
2000) implemented within Terrascan (Terrasolid, 
Finland). The resulting triangulated irregular network 
(TIN) was then converted into a 1 m digital terrain 
model (DTM). 

3.2. Tree extraction 

Individual tree extraction was performed for each plot 
using PTrees algorithm [Vega et al. 2014]. PTrees is a 
hierarchical, multi-scale and multi-criteria segmentation 
algorithm extracting tree segments from untransformed 
elevation data (Z). The Z to Height (H) conversion is 
achieved at the tree crown level following a two stage 
procedure. First, tree apex height (Hapex) is computed 
by subtracting to the elevation of the highest point of the 
crown the DTM value corresponding to the planimetric 
position of this apex (Hapex = Zmax – DTM). Then, the 
height of each point (HPt) associated to the tree crown 
is computed with reference to Hapex (HPt = Hapex – (Zmax-
ZPt)).  

The performance of PTrees over 10 plots of the study 
area was reported in Vega et al. (2014). The algorithm 
enabled to detect 93 % of the trees, among which 94 % 
of the dominant trees and 50 % of the dominated ones. 
False detections were limited to 2.3%. An example of a 
segmented plot is provided in Figure 1. 

For the purpose of that study, a 10 m buffer was used 
around each plot to ensure good crown segmentation 
for all the trees with the trunk located within the plot. But 
only the segmented crowns having their highest point 
within the field plot radius were kept for further 
analyses. Because field measurements were limited to 
trees having a circumference greater than 23.5 cm we 
used a C-H relationship developed locally ( (3), R2 = 
0,83, Mean Relative Error = 18%, N= 549) to identify 
and discard tree segments with a C predicted from their 
total height below 23.5 cm.  

� =	−8.36 + 5.25 ∗ �               (3) 

 

Figure 1 : Segmentation results over a 15 m radius 
circular plot having a tree density of 206 stems ha−1. 

 

3.3. Tree-level LiDAR metrics 

The segmented point cloud was used to derive tree 
parameters. Along with total tree height (Hapex), we 
computed the Convex Hull (CH) of the sub-point cloud 
associated with each tree and projected on the (X, Y) 
plane. CH is the convex envelop of the projected 
segment and is defined by a list of summits. It can be 
used as a proxy of the limit of the projected area (CPA) 

of the crown at the ground level. The product Hapex* CPA 
was used to compute the tree Bounding Volume (TBV) 
defined as the volume including the whole tree 
segment. 

Because crown dimensions were found to be related to 
tree volume [Avery and Brukhart, 1994], we also used 
the segmented point cloud to estimate the crown base 
height (HCB) [Popescu and Zhao, 2008], and compute 
the crown bounding volume (CBV) defined of the part of 
TBV between Hapex and CBV. HCB was computed using a 
four step procedure adapted from the method proposed 
by [Holmgren and Persson, 2004]. First, a tree-height 
histogram was generated by binning the point cloud into 
1 m height intervals and summing the number of points 
in each bin. Then a mask of 0 and 1 digits was 
computed. For each height bin, the mask value was set 
to 0 if the amount of points was lower than 2% of the 
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total number of aboveground points and set to 1 
otherwise. Each value of 1 surrounded by two 0 was 
further switched to 0. Finally, the crown base was 
estimated as the height of the first bin above the ground 
greater than 0. 

2.3. Development of aboveground volume models 
and validation at tree and plot levels 

Two predictive models of TV were developed: a model 
using Hapex and TBV (Model 1), and an enhance model 
using CBV instead of TBV (Model 2). While CBV required 
additional computation to be estimated, we 
hypothesized that CBV would be a better predictor of 
tree volume, providing more accurate information about 
tree structure.  

The models were developed under non-linear least 
squares framework using the gnls function of the nlme 
package in R (cran.r-project.org/). The power variance 
function was used to model heteroscedasticity using 
height (Hapex) as a weighting variable. The accuracy of 
the predictive models was assessed by performing a 
leave-one-out cross-validation (LOOCV) [Picard and 
Cook 1984], and reporting root mean squared error (cv-
RMSE), relative RMSE (cv-RMSE) and adjusted 
determination coefficient (cv-adj.R2).  

Along with the tree level assessment, we evaluated the 
plot-level volume by summing individual tree 
predictions. The resulting volumes were compared to 
their field counterparts, through the computation of the 
mean relative error and the relative RMSE.  

4. Results and Discussion 

For the 30 plots considered, 748 segmented trees were 
finally selected. This number represents 105.5%, of 
field measured trees, and includes both tree omissions 
and false detections. This is in accordance with Vega et 
al. (2014) who reported slight over-segmentation issues 
above the same area. 

For the sake of tree-level development, only 10 plots 
including a total of 161 segmented trees were used. 
Each tree segment was manually matched with the field 
data for model development. Such a manual process 
allows to control the quality of the dataset, avoiding 
wrong assignment of trees that might occur when 
automatic matching algorithms are used. Tree-level 
results are provided in Table 2 and Figure 2. Overall, 
the model including height (Hapex) and crown volume 
(CBV) (Model 2) performed slightly better than the one 
based on height and tree bounding volume (TBV) (Model 
1). While both models showed similar adjustments (i.e. 
similar cv-adj.R2), root mean squared error (cv-RMSE) 
was lower by 1.16% when using Model 2, with a value 
of 34.68%. This result was expected because CBV 
should provide more precise information about tree 
crown structure than TBV. However, the cv-RMSEs of 
both models remain high. This might be explained by 

various reasons. Field volumes were derived from C 
and H using a model describing the relationship 
between the volume and the tree size all over the life of 
an average tree. However, growth allocation to H and C 
is nonlinear and is function of site productivity and 
silviculture. At a given time, the relationship between 
these parameters may not reflect equilibrium, showing 
departure from the average tree. Hence volume 
estimations are not robust to local growth conditions (ie. 
competition, life history), which might contribute to 
inflation in RMSE. Furthermore, Antin et al. (2013) 
emphasized that crown allometries are more robust to 
local growth conditions than stem ones for predicting 
volume. This different dynamics between field 
measured and LiDAR derived parameters may lead to 
discrepancies when comparing LiDAR derived volume 
to field reference one. In addition, as LiDAR-based 
models for volume prediction will always be affected by 
errors in field volume prediction models, their 
improvement requires the use of real volume 
measurements in the field, obtained either from 
destructive tree sampling or from new non-destructive 
means like those offered by terrestrial LiDAR. Improved 
models might also be achieved by integrating 
parameters describing the local environment of the tree, 
such as the distance and size characteristics of the K 
nearest trees in order to catch individual-tree plasticity 
as well as the competition level resulting from local 
growing conditions.  
These issues were partially overcome at the plot level 
(Table 3). For both models, plot RMSEs decreased by a 
factor 2, from above 30% to 16.19 % for Model 1 and 
17.87 % for Model 2. This gain might be explained by a 
tree compensation effect at the plot level. In Scots pine 
stands, Peuhkurinen et al. (2011) reported an 
underestimation of stem number and an overestimation 
of mean stem size compensating each other in the 
estimates of timber volume at the plot level. Here, we 
observed an opposite effect, with an overestimation of 
the stem number which might be compensated by an 
underestimation of crown dimensions. However, a 
better understanding of the effect of both tree omission 
and false detection at the plot level would require a 
detailed analysis of the effect of segmentation quality in 
a range a plot densities, as well as a comparison of the 
properties of false crown with respect to true ones in 
similar growing environments. But the information was 
not available in the framework of the study.  

Interestingly, Model 1 performed better than Model 2 at 
the plot level. Owing to the performance obtained at the 
tree level, such a result cannot be related to the 
reported inaccuracies in crown based height estimation 
[Korhonen et al., 2013]. For example, Jung et al. (2011) 
indicated that LiDAR-derived HCB is generally 
overestimated, because of both signal attenuation and 
crown overlapping. Here, the relative inter-crown 
distance as well as the important crown porosity of 
maritime pine should limit crown overlapping and 
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guarantee a good sampling of the whole tree structure. 
Again, the driven source of error in HCB might be 
attributed to segmentation errors. Indeed, HCB 
estimation might be prone to important instabilities in 
either fused crown or false detections, affecting the 
model performance. Overall, this result highlights needs 
to improve segmentation accuracy as well as the 
possible drawbacks associated with the use of detailed 
and computationally demanding crown parameters such 
as crown-base height. It also confirms the findings of 
Chen & al. (2007) and later of Allouis et al. (2013) 
regarding the interest of TBV for estimating volume and 
biomass. Similarly, bounding volume of trees was found 
to be a good estimator of various plot-based forest 
parameters using area-based approaches (André et al., 
this issue). 

At the plot level, our results provided slightly higher 
errors than those reported by Bouvier et al. (2014) for 
the same site and with the same data but using an 
area-based approach (RMSE=12.19%). As opposed to 
tree-based approaches, area-based approaches consist 
in directly assessing plot volume from descriptors 
computed from the sub-point cloud corresponding to 
each plot and characterizing the stand as a whole, 
without identifying trees (Durrieu et al. 2015). The 
limited improvement obtained using a tree-based 
approach is probably linked to the relatively low 
complexity of the forest type under survey. In such 
forest structures, area-based approaches are known to 
perform very well using few stand-level LiDAR metrics 
providing an accurate description of forest stands 
(Bouvier et al., 2015; Véga et al., 2015). In addition, and 
as indicated above, the performance of the tree-based 
approach on this site can be enhanced by 
improvements in the modeling approach and an 
optimization of the segmentation algorithm. Despite this 
issues, tree based approaches remain attractive, 
because they could provide important information about 
tree density and stand structure. Also, improvements in 
segmentation methods can be expected and will lead to 
improved plot description and volumes estimations, 
thus providing enhanced information for forest 
management. 

5. Conclusion 

This paper introduced a method to estimate individual 
tree volume from airborne LiDAR data in a pine-
dominated environment. Our results suggested that 
models using height and either bounding volume or 
crown volume extracted from point cloud segmentation 
performed well, but model adjustment was affected by 
field volume model used to calibrate and validate the 
models, as well as by local variations in fertility and 
forestry practices. Scaling the result at the plot level led 
to a decrease in error by a factor 2, averaging individual 
tree over- and under-estimations. High level parameters 
such as crown base height and crown volume allow to 
achieve good model quality but might also introduce 
noise due to imprecision in crown base height 
estimation. Based on these results, we would 
recommend to use simple tree descriptors and to 
introduce parameters accounting for the local tree 
environment to further refine LiDAR-based volume 
models. Even if no major improvement in volume 
assessment accuracy was noted compared to the 
results obtained over the same site using an area-
based approach (Bouvier et al., 2014; Véga et al., 
2015) and even if acquisition and processing of high 
density point clouds remains costly and computer 
intensive, developing efficient tree-based approaches 
remains relevant in several ways. For forest inventory 
purposes, combining area-based and tree-based 
approaches to assess forest parameters at plot level is 
likely to improve result accuracy as demonstrated for 
example by Packalen et al. (2015). For management 
purposes, having information on tree parameter 
distributions at stand level is crucial to define 
appropriate silvicultural work and to plan forest 
harvesting. In addition, providing information about the 
tree distribution within a stand over large forest areas 
could be an asset for the development of sustainable 
forest management by facilitating establishment and 
management of irregular and complex stands that are 
more resistant to climatic and health hazards, host a 
greater biodiversity and enable a better protection of 
soils against erosion (Cameron, 2015).  

 
  

Model Formula Adj.R2 RMSE  
(%) 

cv-Adj.R2 cv-RMSE  
(%) 

1 0.0003 * Hapex 1.9719 * TBV
 0.3447 0.87 34.19 0.87 

 
35.84 
 

2 0.0002 * Hapex 2.4119 * CBV 0.2835 0.88 32.80 0.88 
 

34.68 
 

Table 2 : Tree-level ALS-based model of total above ground volume, with corresponding model performance. R2adj is 
the adjusted determination coefficient, RMSE the relative root mean squared error, and cv stands for cross-validation.  
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Model Mean relative 
error (%) 

RMSE (%) 

1 12.52 
 

16.19 
 

2 13.62 
 

17.87 
 

Table 3 : Mean relative error and RMSE (%) of the aggregated tree-volume at plot-level  
 
 

 

 Figure 2 : Predicted versus observed total above ground volume at tree level,  
and corresponding plot of model residuals 
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