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Résumé

Dans cet article, nous proposons une méthode de caractérisation locale des textures des images de trés haute résolution
spatiale, dans lesquelles 'hypothése de stationnarité est peu respectée. Une approche ponctuelle (i.e. non-dense) est
d’abord introduite pour la représentation de I'image en utilisant un ensemble de pixels d’intétét au lieu de la totalité des
pixels de I'image. Un graphe pondéré est ensuite construit & partir de ces pixels représentatifs. Le signal de texture,
porté sur ce graphe, est ensuite analysé a travers une transformée en ondelettes sur graphe. La classification en texture,
implémentée ici de facon non-supervisée, est donc réalisée par la classification des coefficients d’'ondelettes sur le graphe.
Les expérimentations appliquées aux images panchromatiques Pléiades nous donnent des résultats trés prometteurs avec
une bonne précision de classification tout en gardant une compléxité intéressante.

Mots clés : Ondelettes sur graphes, Image Pléiades de trés haute résolution spatiale, Représentation éparse d’'image,
Texture, Classification non-supervisée d’'image

Abstract

The aim of this paper is to focus on local texture characterization for very high resolution remote sensing images. To
prevent from the lack of stationarity hypothesis, the image is represented though a pointwise approach (i.e. non dense)
by using sparse representative pixels. A weighted graph is then constructed from these representative pixels, and a
wavelet transformed is applied on the graph to extract textural features. A classification algorithm, implemented here
in a non-supervised way, of the wavelet coefficients achieves the texture-based classification. Experiments applied on
VHR panchromatic Pléiades images provide very promising and encouraging classification results since they seem to be
accurate while remaining of low complexity with low memory requirements.

Keywords : Wavelets on graphs, Very high spatial resolution Pléiades image, Sparse image representation, Texture,
Unsupervised image classification

1. Introduction 2011). Recent works have studied and used the SGWT
to tackle a lot of problems from various areas such as

Texture characterization for segmentation and classi- (Tremblay and Borgnat, 2013), (Leonardi and Ville, 2011).

fication is one of the most crucial tasks of image proces-
sing which have been tackled in many research studies.
However, with the emergence of very high spatial reso-
lution (VHR) imagery technique, this task becomes more
challenging when texture zones to be classified are about
to be too small or they do not respect the stationarity hy-
pothesis. Therefore, our motivation in the present work is
to develop a texture-based image classification algorithm
based on non-dense local feature characteristics. Hence,
a graph-based approach is investigated as it seems to
be probably relevant for this kind of image modeling and
since no stationary condition is required.

Signal processing on graphs has become an emer-
ging field with several applications in many diverse do-
mains (Shuman et al., 2013). One of the most outstan-
ding tools of this field is the spectral graph wavelet trans-
form (SGWT) which was introduced in (Hammond et al.,

This work is supported by the CNES grant and the Région
Bretagne grant.

In the domain of image processing, SGWT has also been
exploited to attack the problem of image denoising, pro-
posed in (Hammond et al., 2010), or to develop a fil-
terbank algorithm for an edge-aware methodology (Na-
rang et al., 2012). Here, we investigate the use of graph
wavelet transform to characterize local texture features
and then perform an unsupervised classification algo-
rithm applied for the VHR panchromatic Pléiades images.

The paper is organized as follows. Section 2 gives
a brief review of signal processing on graphs in which
some basic notions of graph and the SGWT approach
are going to be presented. Then, the main proposed me-
thodology is described. In Section 4, a short introduction
of VHR panchromatic Pléiades image datasets is given
before experimental results are performed for a validation
of the proposed algorithm. We finally draw a conclusion
from this work as well as consider some perspectives for
future work in Section 5.



2. Review of Signal Processing on Graphs

2.1. Weighted graph and characteristics

A weighted graph G = {V, E, w} consists of |V| = N
vertices connected by a set of edges F with associated
weights w involving the similarity between vertices. The
adjacency matrix A of G is given as follows:

Aij =

{w(i,j) it (i,5) € E )

0 otherwise

The graph Laplacian matrix is definedas L=D — A
where D denotes the degree matrix with Di; = 37 Ayj.
These matrices are squared with N—by— N dimension,
D is a diagonal matrix while A and L are symmetric.
Spectral graph analysis is performed based on the eigen
decomposition of L, given by {Lxr = AeXk }k=0,...,N—1
(Chung, 1997). Since L is symmetric, positive and semi-
definite, {\x}r=o,...,n—1 provides a non-negative eigen-
value set with 0 = Ao < A1 < A2 < ... < Ay-1 and
{xx }k=0,...,N—1 gives an orthogonal eigenvector basis.

2.2. Graph wavelet transform

Using a function g : R™ — R™ representing a trans-
fer function of a band-pass filter in the spectral domain
of graph, Hammond et al. (2011) generated the wavelet
¢, localized in vertex n at scale ¢ as follows:

2

Yen(m) = ) g(tAe)xi(n)xx(m) )

0

£l
Il

Thus, wavelet coefficients of a function f € RY, cal-
led function on vertices, at scale ¢ and vertex n is defined
as the projection of f onto the wavelet basis :

N—-1

Wi(t,n) =< $en, f>= Y g(the) f(k)xe(n)  (3)

k=0

where f(k) =< f,xx >= 2N, f(n)xi(n) represents
the defined graph Fourier transform based on the expan-
sion of f in terms of graph Laplacian eigenvectors.

Similarly, to be analogous to classical wavelet trans-
form, scaling function ¢,, and corresponding coefficients
S¢(n) can be also generated with the support of a low-
pass filter h in graph spectral domain as follows:

N-1

Sp(n) =< n, f >= D () f(k)xr(n)  (4)

k=0

Hence, given a function f € RY, SGWT generates a
set of scaling function coefficients S; € R and J sets
of wavelet coefficients W (t;) € R at scale ¢;, hence
performs a multiscale analysis of signal on graphs.

2.3. lllustration

Figure 1 shows an example of multiscale decompo-
sition for a region of interest (ROI) from a VHR image by
graph wavelets performing on a dense graph constructed
by setting each pixel as a graph vertex. Each vertex is
connected to its 8 closest neighbors on the image plane.

Original image Scaling coeffs

Wavelet coeffs scale 2

FIGURE 1: Example of multi-scale image decomposition
using wavelet transform on a dense graph

Edge weights are then calculated based on the similarity
between pixel intensities and can be performed by an ex-
ponential form e~ 1O =1l ‘where I(i) and I(j) denote
the intensities of vertices i and j. Scaling function image
(i.e. lowpass components) is found on the top right of
the figure while two wavelet images (i.e. bandpass com-
ponents) at 2 different scales ¢; and t. are found at the
bottom.
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FIGURE 2: Corresponding low-pass and band-pass filters
for SGWT image decomposition in Figure 1

We also display in Figure 2 the corresponding low-
pass and band-pass filters in spectral domain which were
used to generate those scaling function and wavelet co-
efficients according to Equations 4 and 3, respectively.

3. Methodology

Our proposed method for texture-based VHR pan-
chromatic Pléiades image classification is found in Figure
3. Each of process blocks is addressed in this section.

3.1. Extraction of representative pixels

The first proposition from this paper is to extract a
set of pixels for a pointwise image representation which
means to use a set of pixels of characteristics to represent
image contents instead of using all image pixels like dense
approaches. The problem of missing or losing informa-
tion may be encountered, especially for describing and
analyzing image textures. However, with an acceptable
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FIGURE 3: Proposed workflow for texture-based panchro-
matic Pléiades unsupervised image classification using
SGWT

level of information loss, such a sparse approach be-
comes interesting and prospective in terms of memory
cost and processing time when dealing with huge size

data which are favored in our case of VHR Pléiades images.

Several approaches can be considered to extract re-
presentative pixels from an image. The simplest way could
be to spatially downsample the image by a given level.
Others can be considered are SIFT (Scale Invariant Fea-
ture Transform) and SURF (Speeded Up Robust Fea-
tures) operators which have already achieved success-
ful performance in the scope of image recognition and
image matching. In this work, we consider that textural
features could be sparsely described by using the local
maximum and minimum pixels from the image.

Local max

FIGURE 4: Texture representation and distinction by local
maximum and minimum pixels

Figure 4 provides an example of different texture zones
from a VHR image. Considering two distinctive textures
localized in the red and green circles, 1D signal was ob-
tained at the bottom by the yellow trace. From this 1D
model, we compare the first texture with high variation to
the second one which is smoother and less varied. Our

proposition is to characterize and distinct these textures
using only the local maxima (red points) and local minima
(black points) by taking into account their amplitudes (i.e.
pixel intensities), their relative distance (i.e. pixel spatial
position) and how they arrange to form the texture. This
principle leads to our point-wise approach for texture re-
presentation and characterization.

A pixel is supposed to be a local maximum (or local
mininum) if it has the greatest intensity (or lowest inten-
sity, respectively) within a defined search window cente-
red at it. Denote SM2X the set of maximum pixels with
search window size w x w, we have:

.. MAX ..
() € S e {rtid) = | max 1.0} 9
where I(z, j) denotes the intensity value of pixel (, ) and
Nuxw(i,7) represents a set of neighboring pixels of (i, )
within the search window.

The set of local minimum pixels SY could be also
extracted using similar principle from Equation 5. These
sets of local pixel extrema are then used for sparsely des-

cribing local features and constructing weighted graphs.

3.2. Graph construction

One of our motivations is to construct a weighted
graph connecting representative points from the image
in which edge weights involve the measure of vertex si-
milarity in terms of local texture features. As it plays a
significant role in the present approach, we propose di-
viding this stage into two small steps: graph vertex de-
finition and description followed by graph weighted edge
creation.

Vertex definition and description. Graph vertex set V are
formed by the extracted representative pixels. We pro-
pose that V = SMAX As a consequence, graph vertex
density in the processed image depends on the parame-
ter w which indicates the level of sparse representation to
be performed. The smaller w is, more pixels are extracted
and the constructed graph thus becomes denser.

Next, for each vertex, a vector of signatures which is
used for texture description and then for similarity mea-
sures between graph vertices is created. The idea is to
describe local feature properties represented by a set of
K closest local maxima and a set of K closest local mi-
nima around each vertex. To do that, we propose calcula-
ting different kinds of measures associating the variation
of intensities, distances and directions formed by the ver-
tex itself and each of two mentioned extrema sets.

For a given vertex p(z, y, v) having its intensity value
v at image position (z, y) and a set of K closest maxima
(or minima) Yx = {pr(zk,yx,vk);k =1,..., K}, follow-
ing features are computed. Note that each pair (p, px)
creates a geometrical vector on the image plane. Cor-
responding length and angle of each geometrical vector
are denoted by d;. and 0y, respectively.

— Mean and variance of intensities:

1 K 1 K
_72 : 2_72 : _ 2
:LL?I - K — Vk, Oy = K — (Uk /"LU)

k=1



— Mean and variance of spatial distances:

K

1 & 1
Md:?dey 032? (dk — pa)?

k=1 k=1

where dy, = \/(z — z1)% + (y — yx)?
— Measures of a—dispersion and concentration of
directions, presented in (Mardia and Jupp, 2000):

K
D = % S {1-cos(Br—a)}, R=\0?+52
k=1

where C' = + Zle cosfrand S = + Zi{:l sin 6,
and « = 0° in our implementation.

Hence, denote 4(i) is the computed vector of signa-
tures for vertex i, §(4) gives a description of local textural
features of the environment around i. Edge weights can
be then computed based on a similarity measure bet-
ween these vectors.

Graph weighted edge creation. The computation of graph
edge weights enables us to build the graph adjacency
matrix. Given that each vertex has itself a description
vector, edge weights associated to the vertex similarity
can be defined by two general ways. One is to use a
threshold to preserve only strong edges between ver-
tices while the other is to connect each vertex to its k-
closest neighbors in terms of distance measure between
their description vectors (i.e. k-strongest edges). The se-
cond is chosen in this work since it seems to be simpler
to control the number of edges from each vertex than
to fix a threshold for eliminating weak edges. So, edge
weights are computed as follows:

e—ﬂy[dist@(’i),(s(j))f if j € Ni(i)

0 otherwise

w(i, ) = (6)

where dist(6(¢), (7)) represents the distance measure
between description vectors of two vertices ¢ and j. For
the actual work, the Euclidean distance ||5(¢),5(j)||2 is
used in which these vectors (i), 6(j) are normalized
so that each measure of intensities, distances and di-
rections has the normal distribution A/(0, 1). Ny () repre-
sents the set of k-closest neighbors of i in terms of des-
cription vector distances and ~ is a free parameter fixed
to 1 in our work.

3.3. Multiscale analysis using SGWT

A weighted graph G with associated adjacency ma-
trix A has been built from the previous section. Multiscale
analysis using SGWT approach is now effectuated. As
reviewed in section 2, graph wavelet transform is mainly
performed in the spectral domain via the eigen decompo-
sition into eigenvalues and eigenvectors of the Laplacian
matrix L. Given that such a decomposition requires huge
memory and time consumption, in particular when fa-
cing with large-size graphs, Hammond et al. (2011) thus
proposed a fast computation using the truncated Cheby-
shev polynomial approximation. The authors also confir-
med that this approximation is strongly efficient in case

of sparse Laplacian matrix which is appropriate to our

previous method of graph construction.

Implementation of SGWT requires the design of low-
pass and band-pass, or even high-pass, filters in graph
spectral domain. In their works, Hammond et al. (2011)
designed and used a set of cubic splines for wavelet ker-
nels (i.e. band-pass filters) and an exponential waveform
capturing low frequencies for scaling function. Example
of these filters has been shown in Figure 2. They also
allowed the reconstruction of input signal for the appli-
cation such as signal synthesis or compression. Here,
it should be noted that our application mainly involves
graph vertex classification by manipulating wavelet coef-
ficients. Hence, the choice of filter kernels is not bounded
by any constraint of signal reconstruction. This advan-
tage gives us more possibilities when selecting a suc-
cessive of filters to capture expected frequencies along
the axis and then produce desirable wavelet coefficients.

Now, given the adjacency matrix A of graph and a
number of scales J, following steps are activated for the
implementation:

+ Calculate the graph Laplacian matrix L = D — A and
estimate the upper bound \,..... of the graph spectral
domain. Note that we do not need to compute all the
set of eigenvalues and eigenvectors by direct decom-
position of L.

+ Calculate the set of scales {t;}7_;, which will decide
the levels of stretching filter kernels on frequency do-
main. Then, design the set of filters comprising one
low-pass h(.) and J band-pass g(¢;.) corresponding
to each scale ¢;.

+ Compute the truncated Chebyshev polynomial approx-
imation for the scaling function and wavelets as de-
scribing in (Hammond et al., 2011).

+ Compute all SGWT coefficients consisting of a set of
scaling function coefficients Sy (n) and J sets of wavelet
coefficients W (t;,n) by supposing that the function
on vertices f(n) is the intensity value at vertex n.

Hence, with a set of N representative pixels linked
by a weighted graph, SGWT analysis generates (J + 1)
set of coefficients which encapsulate the notions of local
features as well as the similarity between graph vertices
at different scales. The next stage employs these coeffi-
cients for classification task.

3.4. K-means clustering

We effectuated an unsupervised clustering algorithm
by performing the K-means (Hartigan and Wong, 1979)
on the normalized wavelet coefficients. We note that af-
ter the transform, wavelet coefficients at each scale vary
in a different range from the others. In particular, sca-
ling function coefficients often possess large values while
high-frequency wavelet coefficients vary in a range close
to zero. Therefore, the normalization is required so that
all coefficient values comply with the distribution A/(0, 1).

One advantage of using K-means classifier is that
only the number of classes is required. Therefore, during
the clustering process, users only need to import their
expected number of classes.



4. Data sets and experiments

4.1. Data sets

Process datasets in our implementation are panchro-
matic images acquired by the VHR Pléiades-1A Constel-
lation (PHR-1A) using its high spatial resolution panchro-
matic sensor of 70cm at nadir. The images were then
resampled at 50cm resolution. They are available from
www.astrium-geo.com.

4.2. Experiments

We performed the experiment on a crop of 1500 x
2000 pixels from a panchromatic Pléiades image acqui-
red in Melbourne, Australia in February 25, 2012 by the
PHR-1A. The input image is shown in Figure 5.

Figure 6 shows the extracted local maximum pixels
using a sliding research window with size 11 x 11 pixels.
As a result, 14588 pixels were extracted and used as re-
presentative pixels. Consequently, a weighted graph with
|V| = 14588 vertices is constructed to connect these
pixels for a sparse image representation.

Next, for the graph construction (Section 3.2), follo-
wing parameters were applied. We set a number of 20
closest local maxima and minima around each vertex.
Then, only 200 strongest edges were kept for each one.
SGWT analysis (Section 2.2) was implemented by ex-
ploiting the cubic spline filters with a number of J = 3
scales. Fast computation algorithm using the truncated
Chebyshev polynomial approximation was also applied.

In order to evaluate the performance of our proposed
method, we would like to perform, in addition, the un-
supervised K-means algorithm on the extracted Haralick
textural features using the Gray Level Cooccurrence Ma-
trix (GLCM) technique (Haralick et al., 1973). This GLCM
approach was implemented as follows:

+ For each representative pixel, compute 4 coocurrence

matrices at 4 different directions (0°, 90°, 45° and 135°).

GLCM parameters: window size 65 x 65 pixels and co-
existing pairwise pixel distance equal to 2.

+ For each matrix, extract 5 Haralick textural features
including Contrast, Correlation, Energy, Homogeneity
and Entropy. Thus, a description vector consisting of
4 x 5 = 20 Haralick features is formed.

+ Normalize these vectors so that each feature has the
normal distribution A/(0, 1).

+ Perform the K-means algorithm on these normalized
feature vectors.

By setting the number of classes of the K-means al-
gorithm equal to 4 for both SGWT and GLCM approach,
classification results are obtained and displayed in Fi-
gures 7 and 8, respectively, for a comparison.

Visually, our proposed method shows better perfor-
mance in terms of characterizing and classifying different
texture zones according to the chosen vertex set from
the image. We find the thematic coherence and robust-
ness dealing with the image illumination condition. On
the contrary, the GLCM approach mixes the classes and
is not capable of providing a general discrimination bet-
ween different classes. For example in Figure 8, there

often exists an intermediate class (red) in the transition
between golf zone (blue) and forest (green) but we could
not define its proper nature. Also, the small lake which
was well classified in Figure 7 (red) could not be distin-
guished in Figure 8 (a mix of yellow, green and red). Mo-
reover, it should be also noted that the result of GLCM
approach significantly depends on the choice of its para-
meters. Here, we tried to perform one of its good results
among several of experimental tests.

In terms of time consumption, a comparison can be
found regarding to two Tables 1 and 2. All the tests were
performed by a deskiop computer Xeon 3.6GHz using
Matlab. Before comparing the two tables, we would like to
emphasize that the GLCM method is usually performed
for a dense approach in the literature. That means, Ha-
ralick feature vector will be calculated for each pixel. We
had also tested this dense GLCM approach and since
our image consists of 3 million pixels, it took approxima-
tely 2 hours for the implementation. Here, for a compa-
rison, we only show computational time of the proposed
method and the GLCM method performed only on selec-
ted pixels (14588). Our method requires more computa-
tional time than the GLCM approach due to the stage of
weighted graph construction. However, as a total time of
251.81s was taken for a complete algorithm with better
classification performance, the proposed method is still
considered to be efficient in terms of time consuming.

Computation time

Extraction of representative pixels 17.59 s
Construction of weighted graph 230.90 s
Fast SGWT 3.27s
K-means 0.05s
Total time 251.81s

TABLE 1: Computation time for unsupervised classifica-
tion using the proposed texture-based SGWT method

Computation time

Extraction of representative pixels 17.59 s
Extraction of Haralick features 35.16 s
K-means 0.17 s
Total time 5292 s

TABLE 2: Computation time for unsupervised classifica-
tion using the non-dense GLCM method

5. Conclusion

A novel texture characterization method for very high
resolution images is proposed by using the spectral graph
wavelets. In the current paper, the algorithm is applied
for unsupervised classification of panchromatic Pléiades
images. Using such a method, we would like to empha-
size the effectiveness of a point-wise approach by a graph
model for texture representation and description. During
the paper, the proposed approach has been performed



FIGURE 5: A crop from a VHR panchromatic Pléiades FIGURE 6: Vertex definition from the extracted representa-
image, © CNES (2012), distribution Airbus DS/Spot Image tive pixels (i.e. local maxima)

FIGURE 7: Unsupervised classification result using the pro- FIGURE 8: Unsupervised classification result using the
posed SGWT approach GLCM approach

using the local maximum and local minimum pixels to Hammond, D. K., Vandergheynst, P., Gribonval, R., 2011. Wa-
characterize textural features, escaping classical dense velets on graphs via spectral graph theory. Appl. Compt. Har-

mon. Anal. 30 (2), 129-150.
Haralick, R. M., Shanmugam, K., Dinstein, I., November 1973.
Textural features for image classification. IEEE Trans. on Sys-

approaches when dealing with texture description for very
huge size images. Graph wavelets are generated on our

own graph and their coefficients are then exploited. Ex- tems, Man. and Cybernetics 3 (6), 610-621.

periments have performed very promising and competi- Hartigan, J. A., Wong, M. A., 1979. Algorithm as 136 : A k-
tive results in terms of good texture classification as well means clustering algorithm. Journal of the Royal Statistical
as low time consumption. Society. Series C (Applied Statistics) (1), 100—108.

Leonardi, N., Ville, D. V. D., March 2011. Wavelet frames on
graphs defined by fMRI functional connectivity. In : IEEE In-
ternational Symposium on Biomedical Imaging.

Future work can concentrate on the development of
the algorithm in terms of improving each block of the pro-

cessing chain, especially for the extraction of represen- Mardia, K. V., Jupp, P. E., 2000. Directional statistics. John Wiley
tative pixels and the definition of vertex description vec- and Sons Ltd.

tors for graph construction. Other perspectives could be Narang, S. K., Chao, Y. H., Ortega, A., 2012. Graph-wavelet fil-
to investigate the present method on other types of very terbanks for edge-aware image processing. In : Statistical Si-
high resolution image data such as Radar or multispec- gnal Processing Workshop. pp. 141-144.

Shuman, D. I, Narang, S. K., Frossard, P., Ortega, A., Vander-
gheynst, P, May 2013. The emerging field of signal proces-
sing on graphs : Extending high-dimensional data analysis to

Références networks and other irregular domains. IEEE Signal Proces-
sing Society 30 (3), 83—98.
Chung, F. R. K., 1997. Spectral graph theory. In : AMS. Tremblay, N., Borgnat, P., September 2013. Multiscale commu-
Hammond, D., Raoaroor, K., Jacques, L., Vandergheynst, P, nity mining in networks using spectral graph wavelets. In :
April 2010. Image denoising with nonlocal graph wavelets. EUSIPCO.
In : SIAM Conference on Imaging Science.

tral images.



