The potential of Pléiades imagery for vegetation mapping: an example of grasslands and pastoral environments

Auteurs-es

  • Vincent Thierion Irstea - Grenoble
  • Samuel Alleaume
  • Christine Jacqueminet Irstea - Montpellier
  • Christelle Vigneau EVS - Université Saint-Etienne, ENS Lyon
  • Kristell Michel EVS - Université Saint-Etienne, ENS Lyon
  • Sandra Luque Irstea - Grenoble

DOI :

https://doi.org/10.52638/rfpt.2014.124

Mots-clés :

vegetation mapping, vegetation physiognomy, texture features, VHSR Pléiades imagery

Résumé

Nowadays the use of remote sensing for vegetation mapping over large areas is becoming progressively common, with the increase of satellites providing a good trade-off between metric spatial resolution and large swath (e.g. Spot 5, RapidEye). In France, the government launched an ambitious project to map all terrestrial habitats of the national territory. — Thus, CarHAB project uses remote sensing technology to support field work and ground observations for vegetation mapping in support to the 11 National Botanical Conservatories working on the whole of French territory. For this purpose, a physiognomic typology has been produced. This typology captures the intrinsic structure of vegetation and potentially its land use. In order to improve semantic and geometric accuracy of the vegetation cover, the use of infra-metric imagery, such as the ones provided by Pléiades constellation offer valuable insights. This imagery offers visual and geometric potentialities closed to aerial photos but with the advantage of better spectral information. Results presented in this research focus on physiognomic mapping of natural and semi-natural vegetation of pasture, grasslands and farmland areas in Isere Department in France. The potentialities of Pléiades imagery are demonstrated by evaluating separability capabilities of textural analysis of woody and herbaceous habitats and vegetation associated to screes.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Biographie de l'auteur-e

Vincent Thierion, Irstea - Grenoble

Ingénieur de recherche, Unité "Ecosystèmes Montagnards"

Références

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M., 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3): 239-58.
Bock, M., 2003. Remote sensing and GIS-based techniques for the classification and monitoring of biotopes: Case examples for a wet grass and moor land area in Northern Germany. Journal for Nature Conservation, 11: 145-155.
Bock, M., Xofis, P., Mitchley, J., Rossner, G., and Wissen, M., 2005. Object-oriented methods for habitat mapping at multiple scales - Case studies from Northern Germany and Wye Downs. UK. Journal for Nature Conservation, 13: 75-89.
Coburn, C. A., Roberts, A.C.B., 2004. A multiscale texture analysis procedure for improved forest stand classification. International Journal of Remote Sensing, 25: 4287-4308.
Díaz Varela, R., Ramil Rego, P., Calvo Iglesias, S., and Muñoz Sobrino, C., 2008. Automatic habitat classification methods based on satellite images: A practical assessment in the NW Iberia coastal mountains. Environmental Monitoring and Assessment, 144: 229-250.
Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S., Shugart, H.H., 2010. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment, 114: 792-804.
Förster, M., 2008. Integration of Geo-Information in Classification Processes of Satellite Imagery for NATURA 2000 Monitoring. PhD manuscript, Institut für Landschaftsarchitektur und Umweltplanung.
Franke, J., Keuck, V., and Siegert, F., 2012. Assessment of grassland use intensity by remote sensing to support conservation schemes. Journal for Nature Conservation, 20: 125-134.
Franklin, S.E., Maudie, A.J., Lavigne, M.B., 2001. Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy. Photogrammetric Engineering and Remote Sensing, 67(7): 849-56.
Ge, S., Carruthers, R., Gong, P., Herrera, A., 2006. Texture analysis for mapping Tamarix parviflora using aerial photographs along the Cache Creek. California. Environmental Monitoring and Assessment, 114: 65-83.
Grizonnet, M., Inglada, J., 2010. Monteverdi - remote sensing software from educational to operational context. Proceedings of the 30th EARSeL Symposium: Remote Sensing for Science, Education and Culture, Paris, France, May 2010.
Jelaska, S.D., KuÅ¡an, V., Peternel, H., Grguriæ, Z., Mihulja, A., and Major, Z., 2005. Vegetation mapping of Žumberak - Samoborsko gorje Nature Park, Croatia, using Landsat 7 and field data. Acta Botanica Croatica, 64: 303-311.
Kim, M., Madden, M., Warner, T.A., 2009. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: Segmentation quality and image classification issues. Photogrammetric Engineering and Remote Sensing, 75 (7): 819-29.
Kim, M., Warner, T.A., Madden, M., Atkinson, D.S., 2011. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects. International Journal of Remote Sensing, 32 (10): 2825-50.
Haralick, R.M., 1979. Statistical and structural approaches to textures. Proceedings of the IEEE 67, 786-804.
Hatunen, S., Härmä, P., Kallio, M., and Törmä, M., 2008. Classification of natural areas in northern Finland using remote sensing images and ancillary data. Proceedings of SPIE 7110, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VIII, Cardiff, Wales, United Kingdom.
Huang X., Zhang L., Li, P., 2007. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 4(2): 260-264.
Laliberte, A., Koppa, J., Fredrickson, E., and Rango, A., 2006. Comparison of nearest neighbor and rule-based decision tree classification in an object-oriented environment. Proceedings of IEEE international Geoscience and Remote Sensing Symposium, Denver, Colorado, USA, 3923-3926.
Lang, S., 2008. Object-based image analysis for remote sensing applications: Modeling reality-dealing with complexity. In: Blaschke, T., Lang, S., Hay, J.G. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Springer, 3-27.
Langanke, T., Burnett, C., Lang, S., 2007. Assessing the mire conservation status of a raised bog site in Salzburg using object-based monitoring and structural analysis. Landscape and Urban Planning, 79: 160-169.
Lucas, R., Medcalf, K., Brown, A., Bunting, P., Breyer, J., Clewley, D., Keyworth, S., and Blackmore, P., 2011. Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 81-102.
MacAlister, C., and Mahaxay, M., 2009. Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat ETM images and field survey data. Journal of Environmental Management, 90: 2130-2137.
Mesner, N., and OÅ¡tir, K., 2014. Investigating the impact of spatial and spectral resolution of satellite images on segmentation quality. Journal of Applied Remote Sensing, 8(1).
Nagendra, H., and Rocchini, D., 2008. High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodiversity and Conservation, 17: 3431-3442.
Nussbaum, S., Niemeyer, I., and Canty, M.J., 2006. A new tool for automated feature extraction in the context of object-based image analysis. Proceeding of 1st International Conference on Object-based Image Analysis (ISPRS Archives), Salzburg, Austria, 6 p.
Ota, T., Mizoue, N., Yoshida, S., 2011. Influence of using texture information in remote sensed data on the accuracy of forest type classification at different levels of spatial resolution. Journal of Forest Research, 16(6): 432-37.
Rapinel, S. (2012). Contribution de la télédétection à l'évaluation fonctionnelle des zones humides : De l'observation à la modélisation prospective. Thèse de doctorat. Université Rennes 2.
Spanhove, T., Vanden Borre, J., Delalieux, S., Haest, B., and Paelinckx, D., 2012. Can remote sensing estimate fine-scale quality indicators of natural habitats? Ecological Indicators, 18: 403-412.
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., and Steininger, M., 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18: 306-314.
Wang, L., Sousa, W.P., Gong, P., Biging, G.S., 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3-4): 432-440.
Wang, K., Franklin, S.E., Guo, X., Cattet, M., 2010. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors, 10: 9647-9667.
Wood, E.M., Pidgeon, A.M., Radeloff, V.C., Keuler, N.S., 2012. Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121: 516-26.

Téléchargements

Publié-e

2014-10-23

Comment citer

Thierion, V., Alleaume, S., Jacqueminet, C., Vigneau, C., Michel, K., & Luque, S. (2014). The potential of Pléiades imagery for vegetation mapping: an example of grasslands and pastoral environments. Revue Française de Photogrammétrie et de Télédétection, (208), 105–110. https://doi.org/10.52638/rfpt.2014.124

Numéro

Rubrique

Articles

Articles les plus lus du,de la,des même-s auteur-e-s