Unsupervised Hyperspectral Band Selection using Clustering and Single-Layer Neural Network

Auteurs-es

  • Mateus Habermann Universite de Technologie de Compiegne
  • Vincent Frémont
  • Elcio Hideiti Shiguemori

DOI :

https://doi.org/10.52638/rfpt.2018.419

Résumé

Hyperspectral images provide rich  spectral details of the observed scene by exploiting contiguous bands.
But, the processing of such images becomes heavy, due to the high dimensionality.
Thus, band selection is a practice that has been adopted before any further processing takes place.
Therefore, in this paper, a new unsupervised method for band selection based on clustering and neural network is proposed.
A comparison with six other band selection frameworks shows the strength of the proposed method.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Téléchargements

Publié-e

2018-09-21

Comment citer

Habermann, M., Frémont, V., & Shiguemori, E. H. (2018). Unsupervised Hyperspectral Band Selection using Clustering and Single-Layer Neural Network. Revue Française de Photogrammétrie et de Télédétection, (217-218), 33–42. https://doi.org/10.52638/rfpt.2018.419

Numéro

Rubrique

Meilleurs articles CFPT 2018