Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2

Authors

  • François Messner Université du Maine
  • Jeannine Corbonnois Université du Maine
  • Fanny Stella Tchitouo Ntenzou

DOI:

https://doi.org/10.52638/rfpt.2018.310

Keywords:

Classification, incertitude, évaluation de la précision thématique, GEOBIA, apprentissage actif, WorldView-2

Abstract

L'évaluation de la précision des cartes thématiques produites par télédétection est une finalité de tout processus de classification modélisant le paysage. Reposant traditionnellement sur la matrice de confusion, elle peut être complétée par des méthodes alternatives plus à même de prendre en compte le biais relatif à la sélection des échantillons d'apprentissage, ainsi que par l'emploi d'approches représentant spatialement l'incertitude inhérente aux classifications. Une telle démarche est adoptée dans cet article, en évaluant la précision à l'aide des estimateurs du Maximum de Probabilité a Posteriori, puis en déterminant, pour chaque unité de carte, des mesures d'incertitude : l'entropie quadratique, la divergence de Kullback-Leibler et un indice de concordance qualitatif. Ces traitements sont analysés et comparés selon 3 classifieurs, Random Forest, C5.0 et l'Analyse Discriminante Linéaire et selon 4 stratégies de classification : classifieurs seuls, classifieurs avec procédure de bagging, classifieurs avec procédure d'apprentissage actif et classifieurs avec procédure d'apprentissage actif et de bagging. Les résultats obtenus soulignent la complémentarité des estimateurs de précision pour mettre en évidence un biais dans l'évaluation de la précision ou dans la détermination des probabilités a posteriori, et justifie la prise en considération des indices d'incertitude comme source d'informations sur la distribution spatiale des erreurs de cartographie.

Downloads

Download data is not yet available.

References

Argyridis, A., and Argialas, D.P., 2015. A Fuzzy Spatial Reasoner for Multi-Scale GEOBIA Ontologies. Photogrammetric Engineering & Remote Sensing 81, 491—498.
Arvor, D., Durieux, L., Andrés, S., and Laporte, M.-A., 2013. Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing 82, 125—137.
Belgiu, M., and DrÇŽguÅ£, L., 2014. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing 96, 67—75.
Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., Ratkowski, A.J., Felde, G., and Hoke, M.L., 2005. Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. pp. 668—678.
Bishop, M.P., James, L.A., Shroder Jr., J.F., and Walsh, S.J., 2012. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 137, 5—26.
Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65, 2—16.
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., et al., 2014. Geographic Object-Based Image Analysis — Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing 87, 180—191.
Boyd, D.S., and Foody, G.M., 2011. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics 6, 25—36.
Breiman, L., 1996. Bagging Predictors. Machine Learning 24, 123—140.
Breiman, L., 2001. Random Forests. Machine Learning 45, 5—32.
Burnham, K.P., and Anderson, D.R., 2001. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl. Res. 28, 111—119.
Clark, M.L., Roberts, D.A., and Clark, D.B., 2005. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment 96, 375—398.
Clinton, N., Yu, L., and Gong, P., 2015. Geographic stacking: Decision fusion to increase global land cover map accuracy. ISPRS Journal of Photogrammetry and Remote Sensing 103, 57—65.
Comber, A., Fisher, P., Brunsdon, C., and Khmag, A., 2012. Spatial analysis of remote sensing image classification accuracy. Remote Sensing of Environment 127, 237—246.
Convertino, M., Mangoubi, R.S., Linkov, I., Lowry, N.C., and Desai, M., 2012. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery. PLOS ONE 7, e46616.
Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García Millán, V.E., Strasser, T., Vanden Borre, J., Toon, S., and Michael, F., 2015. Remote sensing for mapping natural habitats and their conservation status — New opportunities and challenges. International Journal of Applied Earth Observation and Geoinformation 37, 7—16.
Costa, H., Foody, G.M., and Boyd, D.S., 2015. Integrating User Needs on Misclassification Error Sensitivity into Image Segmentation Quality Assessment. Photogrammetric Engineering & Remote Sensing 81, 451—459.
Cracknell, M.J., and Reading, A.M, 2014. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences 63, 22—33.
Crawford, M.M., Tuia, D., and Yang, H.L., 2013. Active Learning: Any Value for Classification of Remotely Sensed Data? Proceedings of the IEEE 101, 593—608.
Criminisi, A., Shotton, J., and Konukoglu, E., 2011. E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning.
DrăguÅ£, L., Csillik, O., Eisank, C., and Tiede, D., 2014. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing 88, 119—127.
Dronova, I., Gong, P., Clinton, N.E., Wang, L., Fu, W., Qi, S., and Liu, Y., 2012. Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sensing of Environment 127, 357—369.
Du, P., Liu, S., Xia, J., and Zhao, Y., 2013. Information fusion techniques for change detection from multi-temporal remote sensing images. Information Fusion 14, 19—27.
Duro, D.C., Franklin, S.E., and Dubé, M.G., 2012. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment 118, 259—272.
Esch, T., Metz, A., Marconcini, M., and Keil, M., 2014. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. International Journal of Applied Earth Observation and Geoinformation 28, 230—237.
Fauvel, M., Chanussot, J., and Benediktsson, J.A., 2006. Decision Fusion for the Classification of Urban Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing 44, 2828—2838.
Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80, 185—201.
Freund, Y., and Schapire, R.E., 1996. Experiments with a New Boosting Algorithm. In In Proceedings of the thirteenth international conference on machine learning, (Morgan Kaufmann), pp. 148—156.
Ghosh, A., and Joshi, P.K., 2014. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation 26, 298—311.
Giacco, F., Thiel, C., Pugliese, L., Scarpetta, S., and Marinaro, M., 2010. Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs. IEEE Transactions on Geoscience and Remote Sensing 48, 3769—3779.
Gonçalves, L.M.S., Fonte, C.C., Júlio, E.N.B.S., and Caetano, M., 2012. The application of uncertainty measures in the training and evaluation of supervised classifiers. International Journal of Remote Sensing 33, 2851—2867.
Gopal, S., and Woodcock, C., Boston U., 1994. Theory and Methods for Accuracy Assessment of Thematic Maps Using Fuzzy Sets. Photogrammetric Engineering and Remote Sensing; (United States) 60:2.
Huth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Tuan, V.Q., and Dech, S., 2012. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification. Remote Sensing 4, 2530—2553.
Immitzer, M., Atzberger, C., and Koukal, T., 2012. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sensing 4, 2661—2693.
Kuhn, M., Weston S., and Coulter, N.. C code for C5.0 by R. Quinlan, 2014. C50: C5.0 Decision Trees and Rule-Based Models. R package version 0.1.0-21. http://CRAN.R-project.org/package=C50
Kuhn, M., 2015. caret: Classification and Regression Training. R package version 6.0-41 http://CRAN.R-project.org/package=caret
Kullback, S., and Leibler, R.A., 1951. On Information and Sufficiency. Ann. Math. Statist. 22, 79—86.
Laben, C.A., and Brower, B.V., 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening.
Li, M., Ma, L., Blaschke, T., Cheng, L., and Tiede, D., 2016. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observation and Geoinformation 49, 87—98.
Liaw, A., and Wiener, M., 2002. Classification and Regression by randomForest. R News 2(3), 18--22.
Loosvelt, L., Peters, J., Skriver, H., Lievens, H., Van Coillie, F.M.B., De Baets, B., and Verhoest, N.E.C., 2012. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. International Journal of Applied Earth Observation and Geoinformation 19, 173—184.
Löw, F., Michel, U., Dech, S., and Conrad, C., 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing 85, 102—119.
Löw, F., Knöfel, P., and Conrad, C., 2015. Analysis of uncertainty in multi-temporal object-based classification. ISPRS Journal of Photogrammetry and Remote Sensing 105, 91—106.
Mellor, A., Boukir, S., Haywood, A., and Jones, S., 2015. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing 105, 155—168.
Minasny, B., and McBratney, A.B., 2016. Digital soil mapping: A brief history and some lessons. Geoderma 264, Part B, 301—311.
Mulder, V.L., de Bruin, S., Schaepman, M.E., and Mayr, T.R., 2011. The use of remote sensing in soil and terrain mapping — A review. Geoderma 162, 1—19.
Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M., and Mairota, P., 2013. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators 33, 45—59.
Niculescu-Mizil, A., and Caruana, R., 2005. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning, (ACM), pp. 625—632.
Pal, N.R., Bezdek. J.C., 1994. Measuring fuzzy uncertainty. IEEE Trans. Fuzzy Syst., 2, pp. 107—118
PostgreSQL Global Development Group, 2015. PostgreSQL 9.4.0 documentation, URL: http://www.opengeospatial.org/standards/, Open Geospatial Consortium.
Powers, R.P., Hermosilla, T., Coops, N.C., and Chen, G., 2015. Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. International Journal of Applied Earth Observation and Geoinformation 34, 51—57.
Pu, R., and Landry, S., 2012. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment 124, 516—533.
Quinlan, J.R., 1993. C4.5: Programs for Machine Learning (Morgan Kaufmann.
Quinlan, J.R., 1996. Bagging, Boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8, 1996, Volume 1, W.J. Clancey, and D.S. Weld, eds., AAAI Press / The MIT Press), pp. 725—730.
R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Rajan, S., Ghosh, J., and Crawford, M.M., 2008. An Active Learning Approach to Hyperspectral Data Classification. IEEE Transactions on Geoscience and Remote Sensing 46, 1231—1242.
Ramey, J.A., 2012. activelearning: An R Package to label unlabeled data for classification. Fred Hutchinson Cancer Research Center, Baylor University.
Ricotta, C., and Anand, M., 2006. Spatial complexity of ecological communities: Bridging the gap between probabilistic and non-probabilistic uncertainty measures. Ecological Modelling 197, 59—66.
Rocchini, D., and Ricotta, C., 2007. Are landscapes as crisp as we may think? Ecological Modelling 204, 535—539.
Rocchini, D., 2010. While Boolean sets non-gently rip: A theoretical framework on fuzzy sets for mapping landscape patterns. Ecological Complexity 7, 125—129.
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jiménez-Valverde, A., Ricotta, C., Bacaro, G., and Chiarucci, A., 2011. Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. Progress in Physical Geography 35, 211—226.
Rocchini, D., Delucchi, L., Bacaro, G., Cavallini, P., Feilhauer, H., Foody, G.M., He, K.S., Nagendra, H., Porta, C., Ricotta, C., et al., 2013. Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics 17, 82—93.
Rocchini, D., Foody, G.M., Nagendra, H., Ricotta, C., Anand, M., He, K.S., Amici, V., Kleinschmit, B., Förster, M., Schmidtlein, S., et al., 2013. Uncertainty in ecosystem mapping by remote sensing. Computers & Geosciences 50, 128—135.
Rocchini, D., Hernández-Stefanoni, J.L., and He, K.S., 2015. Advancing species diversity estimate by remotely sensed proxies: A conceptual review. Ecological Informatics 25, 22—28.
Schowengerdt, R.A., 2006. Remote Sensing, Third Edition: Models and Methods for Image Processing (Orlando, FL, USA: Academic Press, Inc..
Settles, B., 2009. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin—Madison
Smith, A.M.S., Kolden, C.A., Tinkham, W.T., Talhelm, A.F., Marshall, J.D., Hudak, A.T., Boschetti, L., Falkowski, M.J., Greenberg, J.A., Anderson, J.W., et al., 2014. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment 154, 322—337.
Steele, B.M., Patterson, D.A., and Redmond, R.L., 2003. Toward estimation of map accuracy without a probability test sample. Environmental and Ecological Statistics 10, 333—356.
Steele, B.M., 2005. Maximum posterior probability estimators of map accuracy. Remote Sensing of Environment 99, 254—270.
Stehman, S.V., and Czaplewski, R.L., 1998. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sensing of Environment 64, 331—344.
Stumpf, A., Lachiche, N., Malet, J.P., Kerle, N., and Puissant, A., 2014. Active Learning in the Spatial Domain for Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing 52, 2492—2507.
Tso, B. and Mather, P.M., 2009. Classification methods for remotely sensed data. Boca Raton, FL: CRC Press.
Tuia, D., Pasolli, E., and Emery, W.J., 2011. Using active learning to adapt remote sensing image classifiers. Remote Sensing of Environment 115, 2232—2242.
Tuia, D., Volpi, M., Copa, L., Kanevski, M., and Munoz-Mari, J., 2011. A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification. IEEE Journal of Selected Topics in Signal Processing 5, 606—617.
Tuia, D., and Munoz-Mari, J., 2013. Learning user's confidence for active learning. Geoscience and Remote Sensing, IEEE Transactions on 51, 872—880.
van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J.B. de, and Woldai, T., 2012. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation 14, 112—128.
Venables, W. N. & Ripley, B. D., 2002. Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Yuhendra, Alimuddin, I., Sumantyo, J.T.S., and Kuze, H., 2012. Assessment of pan-sharpening methods applied to image fusion of remotely sensed multi-band data. International Journal of Applied Earth Observation and Geoinformation 18, 165—175.
Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8, 338—353.
Zengeya, F.M., Mutanga, O., and Murwira, A., 2013. Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. International Journal of Applied Earth Observation and Geoinformation 21, 513—524.

Published

2018-04-19

How to Cite

Messner, F., Corbonnois, J., & Tchitouo Ntenzou, F. S. (2018). Analyse de l’incertitude et de la précision thématique de classifications GEOBIA d’une image WorldView-2. Revue Française de Photogrammétrie et de Télédétection, (216), 19–37. https://doi.org/10.52638/rfpt.2018.310

Issue

Section

Articles