Textural features from wavelets on graphs for very high resolution panchromatic Pléiades image classification

Auteurs-es

  • Minh Tan Pham TELECOM Bretagne
  • Grégoire Mercier TELECOM Bretagne
  • Julien Michel CNES

DOI :

https://doi.org/10.52638/rfpt.2014.91

Mots-clés :

Ondelettes sur graphes, Image Pléiades de très haute résolution spatiale, Représentation éparse d'image, Texture, Classification non-supervisée d'image

Résumé

Dans cet article, nous proposons une méthode de caractérisation locale des textures des images de très haute résolution spatiale, dans lesquelles l'hypothèse de stationnarité est peu respectée.Une approche ponctuelle (i.e. non-dense) est d'abord introduite pour la représentation de l'image en utilisant un ensemble de pixels d'intétêt au lieu de la totalité des pixels de l'image. Un graphe pondéré est ensuite construit à partir de ces pixels représentatifs. Le signal de texture, porté sur ce graphe, est ensuite analysé à travers une transformée en ondelettes sur graphe. La classification en texture, implémentée ici de façon non-supervisée, est donc réalisée par la classification des coefficients d'ondelettes sur le graphe. Les expérimentations appliquées aux images panchromatiques Pléiades nous donnent des résultats très prometteurs avec une bonne précision de classification tout en gardant une compléxité intéressante.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Biographie de l'auteur-e

Minh Tan Pham, TELECOM Bretagne

Doctorant

Références

Chung, F. R. K., 1997. Spectral graph theory. In : AMS.

Hammond, D., Raoaroor, K., Jacques, L., Vandergheynst, P.,
April 2010. Image denoising with nonlocal graph wavelets.
In : SIAM Conference on Imaging Science.

Hammond, D. K., Vandergheynst, P., Gribonval, R., 2011. Wavelets on graphs via spectral graph theory. Appl. Compt. Harmon. Anal. 30 (2), 129—150.

Haralick, R. M., Shanmugam, K., Dinstein, I., November 1973. Textural features for image classification. IEEE Trans. on Systems, Man and Cybernetics 3 (6), 610-621.

Hartigan, J. A., Wong, M. A., 1979. Algorithm as 136 : A kmeans clustering algorithm. Journal of the Royal Statistical
Society. Series C (Applied Statistics) (1), 100—108.

Leonardi, N., Ville, D. V. D., March 2011. Wavelet frames on
graphs defined by fMRI functional connectivity. In : IEEE International Symposium on Biomedical Imaging.

Mardia, K. V., Jupp, P. E., 2000. Directional statistics. John Wiley and Sons Ltd.

Narang, S. K., Chao, Y. H., Ortega, A., 2012. Graph-wavelet filterbanks for edge-aware image processing. In : Statistical Signal Processing Workshop. pp. 141—144.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., Vandergheynst, P., May 2013. The emerging field of signal processing on graphs : Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Society 30 (3), 83—98.

Tremblay, N., Borgnat, P., September 2013. Multiscale community mining in networks using spectral graph wavelets. In : EUSIPCO.

Téléchargements

Publié-e

2014-09-05

Comment citer

Pham, M. T., Mercier, G., & Michel, J. (2014). Textural features from wavelets on graphs for very high resolution panchromatic Pléiades image classification. Revue Française de Photogrammétrie et de Télédétection, (208), 131–136. https://doi.org/10.52638/rfpt.2014.91

Numéro

Rubrique

Articles

Articles les plus lus du,de la,des même-s auteur-e-s