Numerical simulation of landscape evolution and water run-off on digital elevation models obtained from Pleiades

Authors

  • Alex Chen UNC Chapel Hill
  • Jérôme Darbon CMLA - ENS Cachan
  • Carlo De Franchis CMLA - ENS Cachan
  • Gabriele Facciolo CMLA - ENS Cachan
  • Enric Meinhardt CMLA - ENS Cachan
  • Julien Michel CNES
  • Jean-Michel Morel CMLA, ENS Cachan

DOI:

https://doi.org/10.52638/rfpt.2015.135

Keywords:

Landscape evolution model, partial differential equations, river networks, conservation laws, stream incision law, detachment-limited and transport-limited erosion, Pleiades stereopairs

Abstract

This paper illustrates how the main physical laws proposed in landscape evolution models (LEMs) can be modeled by a system of three partial differential equations governing water run-off, stream incision, hill slope evolution and sedimentation. Several numerical experiments on high resolution digital elevation models (DEMs) obtained from image stereo pairs of the satellite Pleiades illustrate its potential to simulate the fine structure of the river network, and to understand the landscape morphology and its causes.

Downloads

Download data is not yet available.

Author Biography

Jean-Michel Morel, CMLA, ENS Cachan

94235, Cachan, France

References

Braun, J., Sambridge, M., 1997. Modelling landscape evolution on
geological time scales: a new method based on irregular spatial
discretization. Basin Res. 9, 27—52.
Braun, J.,Willett, S. D., 2012. A very efficient O(n), implicit and parallel
method to solve the stream power equation governing fluvial
incision and landscape evolution. Geomorphology, 170—179.
Carretier, S., Lucazeau, F., 2005. How does alluvial sedimentation
at range fronts modify the erosional dynamics of mountain catchments?
Basin Res. 17 (3), 361—381.
Chen, A., Darbon, J., Buttazzo, G., Santambrogio, F., Morel, J.-M.,
2014a. On the equations of landscape formation. Interfaces and
Free Boundaries 16 (1), 105—136.
Chen, A., Darbon, J., Morel, J.-M., 2014b. Landscape evolution models:
A review of their fundamental equations. Geomorphology 219,
68—86.
Crave, A., Davy, P., 2001. A stochastic “precipiton" model for simulating
erosion/sedimentation dynamics. Comput. Geosci. 27 (7),
815—827.
Culling, W. E. H., 1960. Analytical theory of erosion. J. Geol. 68 (3),
336—344.
Davis, W. M., 1892. The convex profile of bad-land divides. Science
(508), 245.
de Franchis, C., Meinhardt-Llopis, E., Michel, J., Morel, J.-M., Facciolo,
G., 2014. Automatic digital surface model generation from
pléiades stereo images. Revue Française de Photogrammétrie et de
Télédétection This volume.
Dietrich, W. E., Perron, J. T., 2006. The search for a topographic signature
of life. Nature 439 (7075), 411—418.
Fernandes, N. F., Dietrich, W. E., 1997. Hillslope evolution by diffusive
processes: The timescale for equilibrium adjustments. Water
Resour. Res. 33 (6), 1307—1318.
Gauckler, P., 1867. Etudes Théoriques et Pratiques sur l'Ecoulement
et le Mouvement des Eaux. C. R. Acad. Sci. Paris 64, 818—822.
Gilbert, G. K., 1909. The convexity of hilltops. J. Geol. 17 (4), 344—
350.
Gilbert, G. K., Dutton, C. E., 1877. Report on the Geology of the
Henry Mountains. Govt. print. off.
Hancock, G. R., Coulthard, T. J., Martinez, C., Kalma, J. D., 2011.
An evaluation of landscape evolution models to simulate decadal
and centennial scale soil erosion in grassland catchments. J. Hydrol.
398 (3), 171—183.
Howard, A. D., 1994. A detachment-limited model of drainage basin
evolution. Water Resour. Res. 30 (7), 2261—2285.
Luo, W., 2001. LANDSAP: a coupled surface and subsurface cellular
automata model for landform simulation. Comput. Geosci. 27 (3),
363—367.
Moglen, G. E., Eltahir, E. A. B., Bras, R. L., 1998. On the sensitivity
of drainage density to climate change. Water Resour. Res. 34 (4),
855—862.
Niemann, J. D., Gasparini, N. M., Tucker, G. E., Bras, R. L., 2001.
A quantitative evaluation of Playfair's law and its use in testing
long-term stream erosion models. Earth Surf. Proc. Land. 26, 1317—
1332.
Paik, K., 2012. Simulation of landscape evolution using a global flow
path search method. Environ. Modell. Softw. 33, 35—47.
Refice, A., Giachetta, E., Capolongo, D., 2012. SIGNUM: A matlab,
TIN-based landscape evolution model. Comput. Geosci. 45, 293—
303.
Simpson, G., Schlunegger, F., 2003. Topographic evolution and morphology
of surfaces evolving in response to coupled fluvial and hillslope
sediment transport. J. Geophys. Res. 108 (B6), 2300.
Tucker, G. E., Slingerland, R. L., 1994. Erosional dynamics, flexural
isostasy, and long-lived escarpments: A numerical modeling study.
J. Geophys. Res. 99 (B6), 12229—12243.
Willgoose, G., Bras, R. L., Rodriguez-Iturbe, I., 1991. A coupled channel
network growth and hillslope evolution model: 2. Nondimensionalization
and applications. Water Resour. Res. 27 (7), 1685—
1696.

Published

2015-02-04

How to Cite

Chen, A., Darbon, J., De Franchis, C., Facciolo, G., Meinhardt, E., Michel, J., & Morel, J.-M. (2015). Numerical simulation of landscape evolution and water run-off on digital elevation models obtained from Pleiades. Revue Française de Photogrammétrie et de Télédétection, (209), 117–123. https://doi.org/10.52638/rfpt.2015.135

Issue

Section

Articles

Most read articles by the same author(s)